Question #274366

A circular shaft of 12 cm dia. is subjected to combined bending and twisting moments. The bending moment being three times the twisting moment. If the direct tensile yield point of material is 350 MN/m2 and factor of safety on yield is 4, find the allowable twisting moment by     

a) Maximum principal stress theory

b) Maximum shear stress theory


1
Expert's answer
2021-12-03T04:54:01-0500

Solution;

Stress due to bending moment;

σM=MyˉI=32Mπd3\sigma_M=\frac{M\bar{y}}{I}=\frac{32M}{πd^3}

Stress due to the twisting moment;

σT=TyˉJ=16Tπd3\sigma_T=\frac{T\bar{y}}{J}=\frac{16T}{πd^3}

Average stress;

σa=σx+σy2=σm+02=σM2\sigma_a=\frac{\sigma_x+\sigma_y}{2}=\frac{\sigma_m+0}{2}=\frac{\sigma_M}{2}

R=(σxσy)22+(τxy)2R=\sqrt{(\frac{\sigma_x-\sigma_y)^2}{2}+(\tau_{xy})^2}

R=(σM/2)2+(σT)2R=\sqrt{(\sigma_M/2)^2+(\sigma_T)^2}

σ1=σa+R\sigma_1=\sigma_a+R

By substitution;

σ1=18161.3474T\sigma_1=18161.3474T

σ2=σaR\sigma_2=\sigma_a-R

By substitution;

σ2=477.46T\sigma_2=-477.46T

(a)

Maximum principal stress;

max[σ1,σ2]σallowablemax[\sigma_1,\sigma_2]\leq\sigma_{allowable}

Using σ1;\sigma_1;

18161.3474T350×106418161.3474T\leq\frac{350×10^6}{4}

Hence,allowable twisting moment is;

T4817.92NmT\leq4817.92Nm

(b)

Maximum shearing stress theory;

σ1σ22σallowable\frac{\sigma_1-\sigma_2}{2}\leq\sigma_{allowable}

18161.3474+477.46T287.5×106\frac{18161.3474+477.46T}{2}\leq87.5×10^6

T9389.01NmT\leq9389.01Nm











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS