Solution;
Stress due to bending moment;
σ M = M y ˉ I = 32 M π d 3 \sigma_M=\frac{M\bar{y}}{I}=\frac{32M}{πd^3} σ M = I M y ˉ = π d 3 32 M
Stress due to the twisting moment;
σ T = T y ˉ J = 16 T π d 3 \sigma_T=\frac{T\bar{y}}{J}=\frac{16T}{πd^3} σ T = J T y ˉ = π d 3 16 T
Average stress;
σ a = σ x + σ y 2 = σ m + 0 2 = σ M 2 \sigma_a=\frac{\sigma_x+\sigma_y}{2}=\frac{\sigma_m+0}{2}=\frac{\sigma_M}{2} σ a = 2 σ x + σ y = 2 σ m + 0 = 2 σ M
R = ( σ x − σ y ) 2 2 + ( τ x y ) 2 R=\sqrt{(\frac{\sigma_x-\sigma_y)^2}{2}+(\tau_{xy})^2} R = ( 2 σ x − σ y ) 2 + ( τ x y ) 2
R = ( σ M / 2 ) 2 + ( σ T ) 2 R=\sqrt{(\sigma_M/2)^2+(\sigma_T)^2} R = ( σ M /2 ) 2 + ( σ T ) 2
σ 1 = σ a + R \sigma_1=\sigma_a+R σ 1 = σ a + R
By substitution;
σ 1 = 18161.3474 T \sigma_1=18161.3474T σ 1 = 18161.3474 T
σ 2 = σ a − R \sigma_2=\sigma_a-R σ 2 = σ a − R
By substitution;
σ 2 = − 477.46 T \sigma_2=-477.46T σ 2 = − 477.46 T
(a)
Maximum principal stress;
m a x [ σ 1 , σ 2 ] ≤ σ a l l o w a b l e max[\sigma_1,\sigma_2]\leq\sigma_{allowable} ma x [ σ 1 , σ 2 ] ≤ σ a ll o w ab l e
Using σ 1 ; \sigma_1; σ 1 ;
18161.3474 T ≤ 350 × 1 0 6 4 18161.3474T\leq\frac{350×10^6}{4} 18161.3474 T ≤ 4 350 × 1 0 6
Hence,allowable twisting moment is;
T ≤ 4817.92 N m T\leq4817.92Nm T ≤ 4817.92 N m
(b)
Maximum shearing stress theory;
σ 1 − σ 2 2 ≤ σ a l l o w a b l e \frac{\sigma_1-\sigma_2}{2}\leq\sigma_{allowable} 2 σ 1 − σ 2 ≤ σ a ll o w ab l e
18161.3474 + 477.46 T 2 ≤ 87.5 × 1 0 6 \frac{18161.3474+477.46T}{2}\leq87.5×10^6 2 18161.3474 + 477.46 T ≤ 87.5 × 1 0 6
T ≤ 9389.01 N m T\leq9389.01Nm T ≤ 9389.01 N m
Comments