Question #261616

A wooden log of 0.8 m diameter and 6 m length is floating in a river water. Find the depth of wooden log in water when the sp. gr. Of the wooden log is 0.7.


1
Expert's answer
2021-11-06T01:35:25-0400
mg=ρwgVsubmerged, Vsubmerged=mρw=SGρwVρw, Vsubmerged=SGV=SGπd24L.mg=\rho_wgV_\text{submerged},\\\space\\ V_\text{submerged}=\frac{m}{\rho_w}=\frac{SG·\rho_w·V}{\rho_w},\\\space\\ V_\text{submerged}=SG·V=SG·\frac{\pi d^2}{4}L.

The volume above the water surface is


ΔV=VVsubmerged=(1SG)πd24L.\Delta V=V-V_\text{submerged}=(1-SG)·\frac{\pi d^2}{4}L.

Divide by length to find the area of the segment above the water:


A=(1SG)πd24.A=(1-SG)·\frac{\pi d^2}{4}.


The area of the segment can be expressed in terms of areas of a triangle and sector:


A=AsAt=πθx(rh),θ=2arctanxh. A=2πarctanxhx(rh). x2=r2(rh)2=2rhh2. h=0.26 m.A=A_s-A_t=\pi\theta-x·(r-h),\\ \theta=2\arctan\frac xh.\\\space\\ A=2\pi\arctan\frac xh-x·(r-h).\\\space\\ x^2=r^2-(r-h)^2=2rh-h^2.\\\space\\ h=0.26\text{ m}.

Therefore, the depth is


D=dh=0.54 m.D=d-h=0.54\text{ m}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS