Solution;
Given;
"A_s=100sq.ft=9.29m^2"
"T_h=200\u00b0F=93.33\u00b0c=366.33K"
"T_c=100\u00b0F=37.78\u00b0c=310.78K"
"L=0.25in=6.35\u00d710^{-3}m"
"\\xi=0.20"
We know;
"Q_T=Q_{rad}+Q_{conv}"
"Q_{rad}=\\xi A_s\\sigma(T_h^4-T_c^4)"
Where;
"\\sigma=5.67\u00d710^-8Wm^{-2}\/K^4"
By substitution;
"Q_{rad}=0.20\u00d79.29\u00d75.67\u00d710^{-8}(366.3^4-310.78^4)"
"Q_{rad}=914.48W"
Now;
"Q_{conv}=hA_s(T_h-T_c)"
Where h is the convectional heat transfer coefficient,value is;
"h=3.5W\/m^2\u00b0c"
Hence;
"Q_{conv}=3.5\u00d79.29(93.33-37.78)"
"Q_{conv}=1806.21W"
Therefore;
"Q_T=914.48+1806.21"
"Q_T=2720.69W"
Comments
Leave a comment