In the spring system as shown in the figure below, each spring constant is ki=k2=1000 N/mm, k3=500 N/mm, k4=200 N/mm, and the applied load is F2=500 N, F300 N. (1) Find the stiffness equation of the spring system (KU=F). (2) Find the displacement of node 2 and node 3
1)
Stiffness matrix for element 1 same as element 2
"[k]^{1or2}=\\begin{vmatrix}\n 1000 & -1000 \\\\\n -1000 & 1000\n\\end{vmatrix}N\/mm"
Stiffness matrix for element 3
"[k]^3=\\begin{vmatrix}\n 500 & -500 \\\\\n -500 & 500\n\\end{vmatrix}N\/mm"
Stiffness matrix for element 4
"[k]^1=\\begin{vmatrix}\n 200 & -200 \\\\\n -200 & 200\n\\end{vmatrix}N\/mm"
Global stiffness matrix
"[k]=\\begin{vmatrix}\n 1000 & -1000 & 0 & 0 & 0\\\\\n -1000 & 2000 & -1000 & 0 & 0\\\\\n 0 & -1000 & 1500 & 500 & 0\\\\\n 0 & 0 & -500 & 700 & -200\\\\\n0 & 0 & 0 & -200 & 200\n\\end{vmatrix}N\/mm"
Let "u_1,u_2,u_3,u_4,u_5" be the displacement at the nodes, then the stiffness equation becomes;
"\\begin{vmatrix}\n 1000 & -1000 & 0 & 0 & 0\\\\\n -1000 & 2000 & -1000 & 0 & 0\\\\\n 0 & -1000 & 1500 & 500 & 0\\\\\n 0 & 0 & -500 & 700 & -200\\\\\n0 & 0 & 0 & -200 & 200\n\\end{vmatrix}\\begin{vmatrix}\n u_1 \\\\\n u_2 \\\\\nu_3 \\\\\nu_4 \\\\\nu_5 \\\\\n\\end{vmatrix}"
"=\\begin{vmatrix}\n R_1 \\\\\n 500 \\\\\n0 \\\\\n300 \\\\\n0\n\\end{vmatrix}"
2)
"\\begin{vmatrix}\n -1000 & 2000 & -1000 \\\\\n 0 & -1000 & 1500 \\\\\n 0 & 0 & -500 \\\\\n\\end{vmatrix}\\begin{vmatrix}\n u_2 \\\\\nu_3 \\\\\nu_4 \\\\\n\\end{vmatrix}=\\begin{vmatrix}\n 500 \\\\\n 0 \\\\\n300\n\\end{vmatrix}"
"u_2=1.7mm"
"u_3=0.9mm"
Comments
Leave a comment