Answer to Question #250397 in Mechanical Engineering for russman

Question #250397

The center rod CD of the assembly shown in the figure is heated from T1 = 30oC to T2 = 180oC using electrical resistance heating. The two end rods AB and EF are heated from T1 = 30oC to  T2 = 50oC. At the lower temperature T1, the gap between C and the rigid bar is 0.7 mm. Rods AB and EF are made of steel and each have a cross-sectional area of 125 mm2. CD is made of aluminum and has a cross-sectional area of 375 mm2. ESteel = 200 GPa, EAluminum = 70 GPa,    αsteel = 12x10-6/oC, αAluminum = 23 x10-6 /oC.

Calculate the force and the stress in rods AB, EF and CD caused by the increase in temperature.  


1
Expert's answer
2021-10-13T04:57:26-0400



FBD of rigid bar is as follows


"\u2206T_{AB}=T_2-T_1"

=50°C-30°C=20°C

"\u2206T_{CD}=T_4-T_3"

=180°C-30°C=150°C

"A_{AB}=125*10^{-6}m^{2}" , LAB=0.3m

"A_{EF}=125*10^{-6}m^{2}" , LEF=0.3m

"A_{CD}=375*10^{-6}m^{2}" , LCD=0.24m

"\\alpha_{AB}=12*10^{-6}\/\u00b0C, E_{AB}=200GPa"

"\\alpha_{EF}=12*10^{-6}\/\u00b0C, E_{EF}=200GPa"

"\\alpha_{CD}=23*10^{-6}\/\u00b0C, E_{CD}=70GPa"

"\\sum M_C=0"

FABy-FEFy=0

FAB=FEF

"\\sum F_y=0"

"F_{AB}+F_{EF}-F_{CD}=0"

"F_{AB}+F_{AB}-F_{CD}=0"

"2F_{AB}=F_{CD}=2F_{EF}"

"\\delta_{AB}=(\\delta_{AB})_T+(\\delta_{AB})_F"

"=\\alpha_{AB}\u2206T_{AB}L_{AB}+\\frac{F_{AB}L_{AB}}{A_{AB}E_{AB}}"

"=(12*10^{-6})(20)(0.3)+\\frac{F_{AB}*0.3}{(125*10^{-6})(200*10^{9}}"

"=72*10^{-6}+(0.012*10^{-6})F_{AB}"

"\\delta_{CD}=(\\delta_{CD})_T-(\\delta_{CD})_F"

"=\\alpha_{CD}\u2206T_{CD}L_{CD}-\\frac{F_{CD}L_{CD}}{A_{CD}E_{CD}}"

"=(23*10^{-6})(150)(0.25)+\\frac{F_{CD}*0.24}{(375*10^{-6})(70*10^{9}}"

"=828*10^{-6}-(9.143*10^{-9})F_{CD}"

"\\delta_{AB}=\\delta_{CD}-\u2206gap"

"72*10^{-6}+(0.012*10^{-6})F_{AB}="

"828*10^{-6}-(9.143*10^{-9})F_{CD}-0.7*10^{-3}"

"(0.012*10^{-6})F_{AB}+(0.01828*10^{-6}F_{AB}=128*10^{-6}-72*10^{-6}"

"F_{AB}=1849.41N"

=1.849kN

FEF=FAB=1.849kN

FCD=2FAB=2*1.849kN

=3.698kN

"\\sigma_{AB}=\\sigma_{EF}=\\frac{F_{AB}}{A_{AB}}"

"=\\frac{1.849*10^{3}}{125*10^{-6}}"

=14.79MPa

"\\sigma_{CD}=\\frac{F_{CD}}{A_{CD}}"

"=\\frac{3.698*10^{3}}{375*10^{-6}}"

=9.86MPa


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS