Question #250397

The center rod CD of the assembly shown in the figure is heated from T1 = 30oC to T2 = 180oC using electrical resistance heating. The two end rods AB and EF are heated from T1 = 30oC to  T2 = 50oC. At the lower temperature T1, the gap between C and the rigid bar is 0.7 mm. Rods AB and EF are made of steel and each have a cross-sectional area of 125 mm2. CD is made of aluminum and has a cross-sectional area of 375 mm2. ESteel = 200 GPa, EAluminum = 70 GPa,    αsteel = 12x10-6/oC, αAluminum = 23 x10-6 /oC.

Calculate the force and the stress in rods AB, EF and CD caused by the increase in temperature.  


1
Expert's answer
2021-10-13T04:57:26-0400



FBD of rigid bar is as follows


TAB=T2T1∆T_{AB}=T_2-T_1

=50°C-30°C=20°C

TCD=T4T3∆T_{CD}=T_4-T_3

=180°C-30°C=150°C

AAB=125106m2A_{AB}=125*10^{-6}m^{2} , LAB=0.3m

AEF=125106m2A_{EF}=125*10^{-6}m^{2} , LEF=0.3m

ACD=375106m2A_{CD}=375*10^{-6}m^{2} , LCD=0.24m

αAB=12106/°C,EAB=200GPa\alpha_{AB}=12*10^{-6}/°C, E_{AB}=200GPa

αEF=12106/°C,EEF=200GPa\alpha_{EF}=12*10^{-6}/°C, E_{EF}=200GPa

αCD=23106/°C,ECD=70GPa\alpha_{CD}=23*10^{-6}/°C, E_{CD}=70GPa

MC=0\sum M_C=0

FABy-FEFy=0

FAB=FEF

Fy=0\sum F_y=0

FAB+FEFFCD=0F_{AB}+F_{EF}-F_{CD}=0

FAB+FABFCD=0F_{AB}+F_{AB}-F_{CD}=0

2FAB=FCD=2FEF2F_{AB}=F_{CD}=2F_{EF}

δAB=(δAB)T+(δAB)F\delta_{AB}=(\delta_{AB})_T+(\delta_{AB})_F

=αABTABLAB+FABLABAABEAB=\alpha_{AB}∆T_{AB}L_{AB}+\frac{F_{AB}L_{AB}}{A_{AB}E_{AB}}

=(12106)(20)(0.3)+FAB0.3(125106)(200109=(12*10^{-6})(20)(0.3)+\frac{F_{AB}*0.3}{(125*10^{-6})(200*10^{9}}

=72106+(0.012106)FAB=72*10^{-6}+(0.012*10^{-6})F_{AB}

δCD=(δCD)T(δCD)F\delta_{CD}=(\delta_{CD})_T-(\delta_{CD})_F

=αCDTCDLCDFCDLCDACDECD=\alpha_{CD}∆T_{CD}L_{CD}-\frac{F_{CD}L_{CD}}{A_{CD}E_{CD}}

=(23106)(150)(0.25)+FCD0.24(375106)(70109=(23*10^{-6})(150)(0.25)+\frac{F_{CD}*0.24}{(375*10^{-6})(70*10^{9}}

=828106(9.143109)FCD=828*10^{-6}-(9.143*10^{-9})F_{CD}

δAB=δCDgap\delta_{AB}=\delta_{CD}-∆gap

72106+(0.012106)FAB=72*10^{-6}+(0.012*10^{-6})F_{AB}=

828106(9.143109)FCD0.7103828*10^{-6}-(9.143*10^{-9})F_{CD}-0.7*10^{-3}

(0.012106)FAB+(0.01828106FAB=12810672106(0.012*10^{-6})F_{AB}+(0.01828*10^{-6}F_{AB}=128*10^{-6}-72*10^{-6}

FAB=1849.41NF_{AB}=1849.41N

=1.849kN

FEF=FAB=1.849kN

FCD=2FAB=2*1.849kN

=3.698kN

σAB=σEF=FABAAB\sigma_{AB}=\sigma_{EF}=\frac{F_{AB}}{A_{AB}}

=1.849103125106=\frac{1.849*10^{3}}{125*10^{-6}}

=14.79MPa

σCD=FCDACD\sigma_{CD}=\frac{F_{CD}}{A_{CD}}

=3.698103375106=\frac{3.698*10^{3}}{375*10^{-6}}

=9.86MPa


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS