y'-2y=y2
Rewriting the equation,
y''=y2+2y
dxdy=y2+2y
y2+2ydy=dx
(y2+2y+1)−1dy=dx
(y+1)2−1dy=dx
Integrate both sides
∫(y+1)2−1dy=∫dx
21ln∣y+2y∣=x+C
y+2y=e2x+C
y=e2x+Cy+2e2x+C
y(1-2e2x+C)=2e2x+C
y=1−2e2x+C2e2x+C
Substitute y=3 and x=0
3=1−2eC2eC
2eC=3-6eC
8eC=3
eC=83
Hence,
y=1−2∗83e2x2∗83e2x
=1−43e2x43e2x
Thus,y=4−3e2x3e2x
Comments