y'-2y=y2
Rewriting the equation,
y''=y2+2y
"\\frac{dy}{dx}=y^{2}+2y"
"\\frac{dy}{y^{2}+2y}=dx"
"\\frac{dy}{(y^{2}+2y+1)-1}=dx"
"\\frac{dy}{(y+1)^{2}-1}=dx"
Integrate both sides
"\\int \\frac{dy}{(y+1)^{2}-1}=\\int dx"
"\\frac{1}{2}ln|\\frac{y}{y+2}|=x+C"
"\\frac{y}{y+2}=e^{2x+C}"
y=e2x+Cy+2e2x+C
y(1-2e2x+C)=2e2x+C
y="\\frac{2e^{2x+C}}{1-2e^{2x+C}}"
Substitute y=3 and x=0
3="\\frac{2e^{C}}{1-2e^{C}}"
2eC=3-6eC
8eC=3
eC="\\frac{3}{8}"
Hence,
y="\\frac{2*\\frac{3}{8}e^{2x}}{1-2*\\frac{3}{8}e^{2x}}"
="\\frac{\\frac{3}{4}e^{2x}}{1-\\frac{3}{4}e^{2x}}"
Thus,y="\\frac{3e^{2x}}{4-3e^{2x}}"
Comments
Leave a comment