Question #233588

An elastic linear spring of spring constant 144 N/cm is compressed from an initial unconstrained length to a final of 6cm. If the work required on the spring is 648J, determine the initial length of the spring in centimeters:


1
Expert's answer
2021-09-06T00:48:59-0400

Elastic potential energy is directly proportional to the square of the change in length and the spring constant.


U=kx22U=\dfrac{kx^2}{2}

Then the work required is


W=U=kx22W=U=\dfrac{kx^2}{2}


x=ll0=2Wkx=|l-l_0|=\sqrt{\dfrac{2W}{k}}

Given


l0>l,l=6 cm=0.06 m,l_0>l, l=6\ cm=0.06\ m,


k=144 N/cm=14400 N/m,W=648Jk=144\ N/cm=14400\ N/m, W=648 J

Substitute

l0=0.06 m+2(648 J)14400 N/m=0.06 m+0.3 m=0.36 ml_0=0.06\ m+\sqrt{\dfrac{2(648\ J)}{14400\ N/m}}=0.06\ m+0.3\ m=0.36\ m

=0.06 m+0.3 m=0.36 m=0.06\ m+0.3\ m=0.36\ m

The initial length of the spring is 36 cm.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS