Question #230580

A single plate clutch using both contact planes is used to deliver a torque of 90 Nm. The axial contact pressure on the clutch is 84 kPa, the coefficient of friction is 0.29 and the outer diameter is 1.26 times the inner diameter. Calculate the inner and outer diameters of the clutch required, as well as the required axial force. 


1
Expert's answer
2021-08-30T01:54:58-0400

T=90Nm

P=84kPa=84*103Nm2

Do=1.26Di

μ=0.29\mu=0.29

T=Di2Do22πμPr2drT=\int_{\frac{D_i}{2}}^{\frac{D_o}{2}}2π\mu Pr^{2}dr

=2πμP[r33]Di2Do2=2π\mu P[\frac{r^{3}}{3}]_{\frac{D_i}{2}}^{\frac{D_o}{2}}

=23πμP[Do2Di2]=\frac{2}{3}π\mu P[\frac{D_o}{2}-\frac{D_i}{2}]

=13πμP(Do3Di3)=\frac{1}{3}π\mu P(D_o^{3}-D_i^{3})

Substitute the values we have to get

90=13π0.2984103(1.26Di3Di3)90=25509.73(0.26Di)Di3=9025509.73=3.5281103Di=3.52811033Di=0.1522mDo=1.26Di=1.260.1522mDo=0.1918mAxial force=π4P(Do2Di2)=π484103(0.191820.15222)=898.7N90=\frac{1}{3}π*0.29*84*10^{3}(1.26D_i^{3}-D_i^{3})\newline 90=25509.73(0.26D_i)\newline D_i^{3}=\frac{90}{25509.73}=3.5281*10^{-3}\newline D_i=\sqrt[3]{3.5281*10^{-3}}\newline D_i=0.1522m\newline D_o=1.26*D_i=1.26*0.1522m\newline D_o=0.1918m\newline Axial\ force=\frac{π}{4}P(D_o^{2}-D_i^{2})\newline =\frac{π}{4}*84*10^{3}(0.1918^{2}-0.1522^{2})\newline =898.7N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS