Question #230028

The bent steel bar shown in figure is 201mm square. Determine the normal stresses at A and B.


1
Expert's answer
2021-08-27T02:35:22-0400

Cosθ=a500=45Cos\theta=\frac{a}{500}=\frac{4}{5}

a=400mm

Secθ=b400=54Sec\theta=\frac{b}{400}=\frac{5}{4}

b=500mm

M1=0\sum M_1=0

(a+b)R2=(500+400+100)450

900R2=1000*450

R2=500kN

Cosθ=c200=45Cos\theta =\frac{c}{200}=\frac{4}{5}

c=160mm

M3=500(201)-450(c+100)

=100500-450(160+100)

=-16500kNmm

M3=16500kNmm clockwise

Fa=450 Sinθ=450(35)Sin \theta=450(\frac{3}{5})

=270kN

σa=PA=270(1000)201201\sigma_a=\frac{P}{A}=\frac{270(1000)}{201*201}

=6.683MPa

σf=6Mbd2=61650010002012012\sigma_f=\frac{6M}{bd^{2}}=\frac{6*16500*1000}{201*201^{2}}

=12.19MPa

σA=σa+σf\sigma_A=-\sigma_a+\sigma_f

=-6.683+12.19

=5.507MPa

σB=σaσf\sigma_B=-\sigma_a-\sigma_f

=-6.683-12.19

=-18.873MPa


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS