When an electric motor is turned on at t = 0, its angular acceleration is 𝛼 = 10e-0.5t where t is the time in seconds. What is the terminal angular velocity of the motor in rpm?
α=10e−0.5t=10e−t2α=dwdt=10e−t2∫α=∫dwdt=∫10e−t2∫0wdw=∫t=0t=∞10e−t2dtw=10e−t2−t2dtw=−20e−t2∣0∞w=20rad/sec=190.985932RPM\alpha = 10 e^{-0.5t}= 10e^{-\frac{t}{2}}\\ \alpha = \frac{dw}{dt} =10e^{-\frac{t}{2}}\\ \int\alpha = \int\frac{dw}{dt} =\int10e^{-\frac{t}{2}}\\ \int _0^w dw =\int_{t=0} ^{t=\infin } 10e^{-\frac{t}{2}} dt\\ w =\frac{10e^{-\frac{t}{2}}}{-\frac{t}{2}} dt\\ w=-20e^{-\frac{t}{2}}|_0^{\infin}\\ w=20 rad/sec =190.985932 RPMα=10e−0.5t=10e−2tα=dtdw=10e−2t∫α=∫dtdw=∫10e−2t∫0wdw=∫t=0t=∞10e−2tdtw=−2t10e−2tdtw=−20e−2t∣0∞w=20rad/sec=190.985932RPM
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
thank you
Comments
thank you