Question #216034

When an electric motor is turned on at t = 0, its angular acceleration is 𝛼 = 10e-0.5t where t is the time in seconds. What is the terminal angular velocity of the motor in rpm?


1
Expert's answer
2021-07-14T05:48:38-0400

α=10e0.5t=10et2α=dwdt=10et2α=dwdt=10et20wdw=t=0t=10et2dtw=10et2t2dtw=20et20w=20rad/sec=190.985932RPM\alpha = 10 e^{-0.5t}= 10e^{-\frac{t}{2}}\\ \alpha = \frac{dw}{dt} =10e^{-\frac{t}{2}}\\ \int\alpha = \int\frac{dw}{dt} =\int10e^{-\frac{t}{2}}\\ \int _0^w dw =\int_{t=0} ^{t=\infin } 10e^{-\frac{t}{2}} dt\\ w =\frac{10e^{-\frac{t}{2}}}{-\frac{t}{2}} dt\\ w=-20e^{-\frac{t}{2}}|_0^{\infin}\\ w=20 rad/sec =190.985932 RPM


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

del
14.07.21, 18:46

thank you

LATEST TUTORIALS
APPROVED BY CLIENTS