Question #215142

A spark ignition engine working on ideal Otto cycle the compression ratio 6. The initial pressure and temperature of air are 1 bar and 37°C. The maximum pressure in the cycle is 30 bar. For unit mass flow, calculate


1
Expert's answer
2021-07-16T03:55:45-0400

Process 1-2

R=8.31428.97=0.287kJ/kgKv1=mRT1P1=10.287310.15100=0.89m3/kgP2P1=(V1V2)γ    P2=61.4=12286kPav2=v1γ=0.896=0.1483m3/kgR= \frac{8.314}{28.97}=0.287 kJ/kgK\\ v_1=\frac{mRT_1}{P_1}=\frac{1*0.287*310.15}{100}=0.89 m^3/kg\\ \frac{P_2}{P_1}=(\frac{V_1}{V_2})^{\gamma} \implies P_2= 6^{1.4}=12286kPa\\ v_2=\frac{v_1}{\gamma}=\frac{0.89}{6}=0.1483 m^3/kg\\

Process 2-3

v2=v3=0.1483m3/kgP3=30barP3P2=T3T2    T3=635.083012.286=1550.75Kv_2=v_3=0.1483 m^3/kg\\ P_3=30 bar\\ \frac{P_3}{P_2}=\frac{T_3}{T_2} \implies T_3=635.08*\frac{30}{12.286}=1550.75 K\\

Process 3-4

v4=v1=0.9m3/kgT3T4=(v4v3)γ1=61.41    T4=1550.7560.4=757.32Kp3p4=(v4v3)γ1=61.4    p4=3060.4=2.441barv_4=v_1=0.9 m^3/kg\\ \frac{T_3}{T_4}=(\frac{v_4}{v_3})^{\gamma-1} =6^{1.4-1} \implies T_4 = \frac{1550.75}{6^{0.4}}=757.32 K\\ \frac{p_3}{p_4}=(\frac{v_4}{v_3})^{\gamma-1} =6^{1.4} \implies p_4 = \frac{30}{6^{0.4}}=2.441 bar\\

Process 4-1

This has a constant volume where heat is rejected


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS