C N = r s i n θ = l s i n ϕ ⟹ s i n ϕ = r l s i n θ CN = r sin \theta = l sin \phi \implies sin \phi = \frac{r}{l} sin \theta CN = rs in θ = l s in ϕ ⟹ s in ϕ = l r s in θ
s i n ϕ = s i n θ n ⟹ n = l r sin \phi = \frac{sin \theta}{n} \implies n=\frac{l}{r} s in ϕ = n s in θ ⟹ n = r l
We know that s i n 2 ϕ + c o s 2 ϕ = 1 ⟹ 1 − s i n 2 ϕ n 2 sin^2 \phi+cos^2 \phi=1 \implies \sqrt{1-\frac{sin^2 \phi}{n^2}} s i n 2 ϕ + co s 2 ϕ = 1 ⟹ 1 − n 2 s i n 2 ϕ
X p = r ( 1 − c o s θ ) + l ( 1 − 1 − s i n 2 ϕ n 2 ) X_p=r(1-cos \theta )+l(1-\sqrt{1-\frac{sin^2 \phi}{n^2}}) X p = r ( 1 − cos θ ) + l ( 1 − 1 − n 2 s i n 2 ϕ )
X p = r ( 1 − c o s θ ) + r ( n − n 2 − s i n 2 θ ) X_p=r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta}) X p = r ( 1 − cos θ ) + r ( n − n 2 − s i n 2 θ )
Velocity Since the velocity of the slider is rate of change of displacement with respect to time
V p = d ( X p ) d t = d d θ d θ d t ( X p ) V_p= \frac{d(X_p)}{dt}= \frac{d}{d\theta} \frac{d \theta}{dt} (X_p) V p = d t d ( X p ) = d θ d d t d θ ( X p )
V p = d ( X p ) d t = d d θ d θ d t ( r ( 1 − c o s θ ) + r ( n − n 2 − s i n 2 θ ) ) V_p= \frac{d(X_p)}{dt}= \frac{d}{d\theta} \frac{d \theta}{dt} (r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta})) V p = d t d ( X p ) = d θ d d t d θ ( r ( 1 − cos θ ) + r ( n − n 2 − s i n 2 θ ))
V p = ω r d θ d t ( r ( 1 − c o s θ ) + r ( n − n 2 − s i n 2 θ ) ) V_p= \omega r \frac{d \theta}{dt} (r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta})) V p = ω r d t d θ ( r ( 1 − cos θ ) + r ( n − n 2 − s i n 2 θ ))
V p = ω r [ s i n θ + s i n θ 2 ∗ n 2 − s i n 2 θ ] V_p= \omega r [sin \theta+ \frac{sin \theta}{2* \sqrt{n^2-sin^2 \theta}}] V p = ω r [ s in θ + 2 ∗ n 2 − s i n 2 θ s in θ ]
Comments