Question #208488

In a slider crank mechanism, the length of the crank and connecting rod are 100 mm 

and 400 mm respectively. The crank rotates uniformly at 600 r.p.m. clockwise. When the crank 

has turned through 45° from the inner dead centre, find, by analytical method : 1. Velocity and 

acceleration of the slider, 2. Angular velocity and angular acceleration of the connecting rod. 

Check your result by Klein’s construction. 

[Ans. 5.2 m/s; 279 m/s2; 11 rad/s; 698 rad/s2]


1
Expert's answer
2021-06-21T05:48:27-0400

CN=rsinθ=lsinϕ    sinϕ=rlsinθCN = r sin \theta = l sin \phi \implies sin \phi = \frac{r}{l} sin \theta

sinϕ=sinθn    n=lrsin \phi = \frac{sin \theta}{n} \implies n=\frac{l}{r}

We know that sin2ϕ+cos2ϕ=1    1sin2ϕn2sin^2 \phi+cos^2 \phi=1 \implies \sqrt{1-\frac{sin^2 \phi}{n^2}}

Xp=r(1cosθ)+l(11sin2ϕn2)X_p=r(1-cos \theta )+l(1-\sqrt{1-\frac{sin^2 \phi}{n^2}})

Xp=r(1cosθ)+r(nn2sin2θ)X_p=r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta})

Velocity Since the velocity of the slider is rate of change of displacement with respect to time

Vp=d(Xp)dt=ddθdθdt(Xp)V_p= \frac{d(X_p)}{dt}= \frac{d}{d\theta} \frac{d \theta}{dt} (X_p)

Vp=d(Xp)dt=ddθdθdt(r(1cosθ)+r(nn2sin2θ))V_p= \frac{d(X_p)}{dt}= \frac{d}{d\theta} \frac{d \theta}{dt} (r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta}))

Vp=ωrdθdt(r(1cosθ)+r(nn2sin2θ))V_p= \omega r \frac{d \theta}{dt} (r(1-cos \theta )+r(n-\sqrt{n^2-sin^2 \theta}))

Vp=ωr[sinθ+sinθ2n2sin2θ]V_p= \omega r [sin \theta+ \frac{sin \theta}{2* \sqrt{n^2-sin^2 \theta}}]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS