Question #206841

A man who can throw a stone with a velocity of 20 m/s wishes to hit a target placed on his own level at a distance of 30m. At what angle should be threw the stone?


1
Expert's answer
2021-06-22T05:08:30-0400
vx(t)=v0cosαv_x(t)=v_0\cos \alpha

x(t)=x0+v0cosαtx(t)=x_0+v_0\cos \alpha \cdot t

vy(t)=v0sinαgtv_y(t)=v_0\sin \alpha-gt

y(t)=y0+v0sinαtgt22y(t)=y_0+v_0\sin \alpha\cdot t-\dfrac{gt^2}{2}



Let x0=x(0)=0,y0=y(0)=0x_0=x(0)=0, y_0=y(0)=0

Find the time when y=0y=0


0+v0sinαtgt22=00+v_0\sin \alpha\cdot t-\dfrac{gt^2}{2}=0

t1=0,t2=2v0sinαgt_1=0, t_2=\dfrac{2v_0\cdot \sin \alpha}{g}

Then


x(t2)=0+v0cosα(2v0sinαg)=30 mx(t_2)=0+v_0\cos \alpha \cdot (\dfrac{2v_0\cdot \sin \alpha}{g})=30\ m

sin2α=30 mg2v02\sin 2\alpha=\dfrac{30\ m\cdot g}{2v_0^2}

v0=20 m/s,g=9.81 m/s2v_0=20\ m/s, g=9.81\ m/s^2



sin2α=30 m9.81 m/s22(20 m/s)2=0.367875\sin 2\alpha=\dfrac{30\ m\cdot 9.81\ m/s^2}{2(20\ m/s)^2}=0.367875

Since 0°α90°0\degree\leq\alpha \leq90\degree

2α=sin1(0.367875)2\alpha=\sin^{-1}(0.367875)

or


2α=180°sin1(0.367875)2\alpha=180\degree-\sin^{-1}(0.367875)

2α21.5846° or 2α158.4154°2\alpha\approx21.5846\degree \text{ or }2\alpha\approx158.4154\degree

α10.8° or α79.2°\alpha\approx10.8\degree \text{ or }\alpha\approx79.2\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
23.06.21, 12:56

Dear Rodel,

You're welcome. We are glad to be helpful. 

If you liked our service please press like-button beside answer field. Thank you!



Rodel
22.06.21, 21:03

Thank you!

LATEST TUTORIALS
APPROVED BY CLIENTS