Answer to Question #196808 in Mechanical Engineering for muhammed mudhasir

Question #196808

A sling psychrometery in a laboratory test recorded the following readings. Dry bulb temperature 35°C

Wet bulb temperature = 25°C Calculate the following

(i) Specific humidity, (ii) Relative humidity

(iii) Vapour density in air dew point depression.

(iv) Dew point temperature and (v) Enthalpy of mixture per kg of dry air

Take atmospheric pressure = 1.0132 bar



1
Expert's answer
2021-05-24T18:07:02-0400

(i)(i) Specific humidity,

W=0.622pvptpv=0.622×0.02521.03120.0252=0.01586=\frac{0.622p_v}{p_t-p_v}=\frac{0.622\times0.0252}{1.0312-0.0252}=0.01586 kg/kg of dry air

(ii)(ii) Relative humidity, ϕ=pvpvs=0.02520.0563\phi=\frac{p_v}{p_{vs}}=\frac{0.0252}{0.0563}

(pvs=0.0563(p_{vs=0.0563} bar corresponding to 350C,^0C, from steam tables)

=0.447=0.447 or 44.744.7% %

(iii)(iii) Vapour density:

using characteristic gas equation , we have

pvVv=mvRvTvp_vV_v=m_vR_vT_v

pv=mvVvRvTv=ρvRvTvp_v=\frac{m_v}{V_v}R_vT_v=\rho_vR_vT_v

where ,ρv=\rho_v= Vapuor density, Rv=R_v= Universal gas contentMolecular weightofH20=8314.318\frac{Universal \space gas \space content}{Molecular\space weight of H_20}=\frac{8314.3}{18}

0.0252×105=ρv×8314.318×(273+35)0.0252\times 10^5=\rho_v\times\frac{8314.3}{18}\times(273+35)

ρv=0.0252×105×188314.3×308=0.0177kg/m3\rho_v=\frac{0.0252\times10^5\times18}{8314.3\times308}=0.0177kg/m^3

(iv)(iv)Dew point temperature;tdp:t_{dp}: Corresponding to 0.0252 bar, from steam tables(by interpolation)

tdp=21+(2221)×0.02520.02490.02640.0249t_{dp}=21+(22-21)\times\frac{0.0252-0.0249}{0.0264-0.0249}

=21.20C=21.2^0C

(v)(v) Enthalpy of mixture per kg of dry air,h:

h=1.005tdb+W(2500+1.88tdb)=1.005t_{db}+W(2500+1.88t_{db})

=1.005×35+0.01586[2500+1.88×35]=1.005\times35+0.01586[2500+1.88\times35]

=35.175+40.69=35.175+40.69

=75.86kJ/kg=75.86kJ/kg of dry air

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment