Answer to Question #194669 in Mechanical Engineering for Kay

Question #194669

https://www.chegg.com/homework-help/questions-and-answers/question-1-figure-1-shows-layer-oil-895-kn-m3-thickness-03-mm-two-parallel-8-flat-plates-u-q77683571


1
Expert's answer
2021-05-24T12:47:01-0400

According to Newtons law of viscosity

τdθdt\tau\propto\frac{d\theta}{dt}

τ=μdθdt=μdydy\tau=\frac{\mu d\theta}{dt}=\frac{\mu dy}{dy}

here μ=\mu= dynamic viscosity

then,τ=μ×(v00.3×103)\tau=\mu\times(\frac{v-0}{0.3\times10^{-3}})

=μ×(0.0500.3×103)=μ166.6666N/m2=\mu\times(\frac{0.05-0}{0.3\times10^{-3}})=\mu166.6666N/m^2

fs=f_s= forces due to shear=μ166.6666N/m2×area×μ=\mu166.6666N/m^2\times area\times\mu

=166.6666×1.5μ=166.6666\times1.5\mu

=250μN=250\mu N

the tension which is applied on ropes will overcome this shear force hence,

Fs=T=250μNF_s=T=250\mu N

Torque =T×r=T\times r

24.5×103=250×μ×25×10324.5\times10^{-3}=250\times \mu\times25\times10^{-3}

μoil=3.92×103kgms\mu_{oil}=3.92\times10^{-3}\frac{kg}{ms} orNsm2\frac{Ns}{m^2}

then, for kinematic viscosity,

V=μoilSoilV=\frac{\mu_{oil}}{S_{oil}}

as Soil=8.9sS_{oil}=8.9s kNm3×103\frac{kN}{m^3{\times10^3}}

912.3334kgm3912.3334\frac{kg}{m^3}

then,V =μoilSoil=3.92×103kgms912.334kgm3=\frac{\mu_{oil}}{S_{oil}}=\frac{3.92\times10^{-3\frac{kg}{ms}}}{912.334\frac{kg}{m^3}}

=4.29667×106m2s=4.29667\times10^{-6}\frac{m^2}{s}

=4.29667×102strokes=4.29667\times10^{-2} strokes

104strokes10^4 strokes


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment