Find the natural frequencies of the system shown on the right, with m1=m, m2=2m, k1=k, and k2=2k. Determine the response of the system when k=1000 N/m, m=20 kg, and the initial values of the displacements of the masses m1 and m2 are l and -1 respectively.
The equation of motion for m1
"m_1\\ddot{x} _1+(k_1+k_2)x_1-k_2x_2=0"
Substituting "- \\omega^2x_1" for "\\ddot{x} _1 \\implies -\\omega^2m_1x_1+(k_1+k_2)x_1-k_2x_2=0"
The equation of motion for m2
"m_2\\ddot{x} _2+(k_1+k_2)x_2-k_2x_2=0"
Equation 1 and 2 in form of a matrix
"\\begin{bmatrix}\n -\\omega^2m_1+k_1+k_2 & -k_2 \\\\\n -k_2 & k_2-m_2\\omega^2\n\\end{bmatrix}\\begin{bmatrix}\n x_1 \\\\\n x_2 \n\\end{bmatrix}= \\begin{bmatrix}\n 0 \\\\\n 0 \n\\end{bmatrix}"
"\\omega^4-(\\frac{k_1+k_2}{m_1}+\\frac{k_2}{m_2})\\omega^2+\\frac{k_1k_2}{m_1m_2}=0"
"\\omega^2_1,\\omega^2_2 = \\frac{k_1+k_2}{2m_1}+\\frac{k_2}{2m_2} \\mp \\sqrt{\\frac{1}{4}(\\frac{k_1+k_2}{m_1}+\\frac{k_2}{2m_2})^2-\\frac{k_1k_2}{m_1m_2}}"
Substituting in the values
"\\omega^2_1,\\omega^2_2 = \\frac{1000+2000}{2*20}+\\frac{2000}{2*40} \\mp \\sqrt{\\frac{1}{4}(\\frac{1000+2000}{20}+\\frac{2000}{2*20})^2-\\frac{1000*2000}{20*40}}"
"\\omega_1=3.6606rad\/s,\\omega_2 =13.6603 rad\/s"
"r_1=\\frac{X_2}{X_1}=\\frac{-m_1\\omega_2^2+k_1+k_2}{k_2}=\\frac{-20*13.6603^2+1000+2000}{2000}=-0.366"
"r_2=\\frac{X_2}{X_1}=\\frac{-m_1\\omega_2^2+k_1+k_2}{k_2}=\\frac{-20*13.6603^2+1000+2000}{2000}=-0.366"
"x_1=-0.366 cos 3.6603t-1.366cos13.6603t"
"x_2=-0.5 cos 3.6603t+0.5cos13.6603t"
Comments
Leave a comment