Question #193730

Find the natural frequencies of the system shown on the right, with m1=m, m2=2m, k1=k, and k2=2k. Determine the response of the system when k=1000 N/m, m=20 kg, and the initial values of the displacements of the masses m1 and m2 are l and -1 respectively.


1
Expert's answer
2021-05-18T16:34:01-0400

The equation of motion for m1

m1x¨1+(k1+k2)x1k2x2=0m_1\ddot{x} _1+(k_1+k_2)x_1-k_2x_2=0

Substituting ω2x1- \omega^2x_1 for x¨1    ω2m1x1+(k1+k2)x1k2x2=0\ddot{x} _1 \implies -\omega^2m_1x_1+(k_1+k_2)x_1-k_2x_2=0

The equation of motion for m2

m2x¨2+(k1+k2)x2k2x2=0m_2\ddot{x} _2+(k_1+k_2)x_2-k_2x_2=0

Equation 1 and 2 in form of a matrix

[ω2m1+k1+k2k2k2k2m2ω2][x1x2]=[00]\begin{bmatrix} -\omega^2m_1+k_1+k_2 & -k_2 \\ -k_2 & k_2-m_2\omega^2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \end{bmatrix}

ω4(k1+k2m1+k2m2)ω2+k1k2m1m2=0\omega^4-(\frac{k_1+k_2}{m_1}+\frac{k_2}{m_2})\omega^2+\frac{k_1k_2}{m_1m_2}=0

ω12,ω22=k1+k22m1+k22m214(k1+k2m1+k22m2)2k1k2m1m2\omega^2_1,\omega^2_2 = \frac{k_1+k_2}{2m_1}+\frac{k_2}{2m_2} \mp \sqrt{\frac{1}{4}(\frac{k_1+k_2}{m_1}+\frac{k_2}{2m_2})^2-\frac{k_1k_2}{m_1m_2}}

Substituting in the values

ω12,ω22=1000+2000220+200024014(1000+200020+2000220)2100020002040\omega^2_1,\omega^2_2 = \frac{1000+2000}{2*20}+\frac{2000}{2*40} \mp \sqrt{\frac{1}{4}(\frac{1000+2000}{20}+\frac{2000}{2*20})^2-\frac{1000*2000}{20*40}}

ω1=3.6606rad/s,ω2=13.6603rad/s\omega_1=3.6606rad/s,\omega_2 =13.6603 rad/s

r1=X2X1=m1ω22+k1+k2k2=2013.66032+1000+20002000=0.366r_1=\frac{X_2}{X_1}=\frac{-m_1\omega_2^2+k_1+k_2}{k_2}=\frac{-20*13.6603^2+1000+2000}{2000}=-0.366

r2=X2X1=m1ω22+k1+k2k2=2013.66032+1000+20002000=0.366r_2=\frac{X_2}{X_1}=\frac{-m_1\omega_2^2+k_1+k_2}{k_2}=\frac{-20*13.6603^2+1000+2000}{2000}=-0.366

x1=0.366cos3.6603t1.366cos13.6603tx_1=-0.366 cos 3.6603t-1.366cos13.6603t

x2=0.5cos3.6603t+0.5cos13.6603tx_2=-0.5 cos 3.6603t+0.5cos13.6603t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS