The equation of motion for m1
m 1 x ¨ 1 + ( k 1 + k 2 ) x 1 − k 2 x 2 = 0 m_1\ddot{x} _1+(k_1+k_2)x_1-k_2x_2=0 m 1 x ¨ 1 + ( k 1 + k 2 ) x 1 − k 2 x 2 = 0
Substituting − ω 2 x 1 - \omega^2x_1 − ω 2 x 1 for x ¨ 1 ⟹ − ω 2 m 1 x 1 + ( k 1 + k 2 ) x 1 − k 2 x 2 = 0 \ddot{x} _1 \implies -\omega^2m_1x_1+(k_1+k_2)x_1-k_2x_2=0 x ¨ 1 ⟹ − ω 2 m 1 x 1 + ( k 1 + k 2 ) x 1 − k 2 x 2 = 0
The equation of motion for m2
m 2 x ¨ 2 + ( k 1 + k 2 ) x 2 − k 2 x 2 = 0 m_2\ddot{x} _2+(k_1+k_2)x_2-k_2x_2=0 m 2 x ¨ 2 + ( k 1 + k 2 ) x 2 − k 2 x 2 = 0
Equation 1 and 2 in form of a matrix
[ − ω 2 m 1 + k 1 + k 2 − k 2 − k 2 k 2 − m 2 ω 2 ] [ x 1 x 2 ] = [ 0 0 ] \begin{bmatrix}
-\omega^2m_1+k_1+k_2 & -k_2 \\
-k_2 & k_2-m_2\omega^2
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}= \begin{bmatrix}
0 \\
0
\end{bmatrix} [ − ω 2 m 1 + k 1 + k 2 − k 2 − k 2 k 2 − m 2 ω 2 ] [ x 1 x 2 ] = [ 0 0 ]
ω 4 − ( k 1 + k 2 m 1 + k 2 m 2 ) ω 2 + k 1 k 2 m 1 m 2 = 0 \omega^4-(\frac{k_1+k_2}{m_1}+\frac{k_2}{m_2})\omega^2+\frac{k_1k_2}{m_1m_2}=0 ω 4 − ( m 1 k 1 + k 2 + m 2 k 2 ) ω 2 + m 1 m 2 k 1 k 2 = 0
ω 1 2 , ω 2 2 = k 1 + k 2 2 m 1 + k 2 2 m 2 ∓ 1 4 ( k 1 + k 2 m 1 + k 2 2 m 2 ) 2 − k 1 k 2 m 1 m 2 \omega^2_1,\omega^2_2 = \frac{k_1+k_2}{2m_1}+\frac{k_2}{2m_2} \mp \sqrt{\frac{1}{4}(\frac{k_1+k_2}{m_1}+\frac{k_2}{2m_2})^2-\frac{k_1k_2}{m_1m_2}} ω 1 2 , ω 2 2 = 2 m 1 k 1 + k 2 + 2 m 2 k 2 ∓ 4 1 ( m 1 k 1 + k 2 + 2 m 2 k 2 ) 2 − m 1 m 2 k 1 k 2
Substituting in the values
ω 1 2 , ω 2 2 = 1000 + 2000 2 ∗ 20 + 2000 2 ∗ 40 ∓ 1 4 ( 1000 + 2000 20 + 2000 2 ∗ 20 ) 2 − 1000 ∗ 2000 20 ∗ 40 \omega^2_1,\omega^2_2 = \frac{1000+2000}{2*20}+\frac{2000}{2*40} \mp \sqrt{\frac{1}{4}(\frac{1000+2000}{20}+\frac{2000}{2*20})^2-\frac{1000*2000}{20*40}} ω 1 2 , ω 2 2 = 2 ∗ 20 1000 + 2000 + 2 ∗ 40 2000 ∓ 4 1 ( 20 1000 + 2000 + 2 ∗ 20 2000 ) 2 − 20 ∗ 40 1000 ∗ 2000
ω 1 = 3.6606 r a d / s , ω 2 = 13.6603 r a d / s \omega_1=3.6606rad/s,\omega_2 =13.6603 rad/s ω 1 = 3.6606 r a d / s , ω 2 = 13.6603 r a d / s
r 1 = X 2 X 1 = − m 1 ω 2 2 + k 1 + k 2 k 2 = − 20 ∗ 13.660 3 2 + 1000 + 2000 2000 = − 0.366 r_1=\frac{X_2}{X_1}=\frac{-m_1\omega_2^2+k_1+k_2}{k_2}=\frac{-20*13.6603^2+1000+2000}{2000}=-0.366 r 1 = X 1 X 2 = k 2 − m 1 ω 2 2 + k 1 + k 2 = 2000 − 20 ∗ 13.660 3 2 + 1000 + 2000 = − 0.366
r 2 = X 2 X 1 = − m 1 ω 2 2 + k 1 + k 2 k 2 = − 20 ∗ 13.660 3 2 + 1000 + 2000 2000 = − 0.366 r_2=\frac{X_2}{X_1}=\frac{-m_1\omega_2^2+k_1+k_2}{k_2}=\frac{-20*13.6603^2+1000+2000}{2000}=-0.366 r 2 = X 1 X 2 = k 2 − m 1 ω 2 2 + k 1 + k 2 = 2000 − 20 ∗ 13.660 3 2 + 1000 + 2000 = − 0.366
x 1 = − 0.366 c o s 3.6603 t − 1.366 c o s 13.6603 t x_1=-0.366 cos 3.6603t-1.366cos13.6603t x 1 = − 0.366 cos 3.6603 t − 1.366 cos 13.6603 t
x 2 = − 0.5 c o s 3.6603 t + 0.5 c o s 13.6603 t x_2=-0.5 cos 3.6603t+0.5cos13.6603t x 2 = − 0.5 cos 3.6603 t + 0.5 cos 13.6603 t
Comments