A balanced-flow ERV is used to ventilate a warehouse at a rate of 1,000 L/s. The air conditions within the warehousearequitecoolanddry,Tdb=10°CandRH=50%.Ataparticularmoment,theoutsideairenters theERVatTdb=38°CandRH=40%.Duringthistime,theairconditionsleavingtheERVontheexhaustside are measured to be Tdb= 31°Cand RH =35%.a)Estimate the Sensible-Effectiveness (%) of theERV.b)Estimate the Latent-Effectiveness (%) of theERV.c)Estimate the drybulb temperature (°C) and relative humidity (%) leaving the ERV on the fresh-airside.d)Plot the conditions of all four air-streams (i.e.,fresh-air, entering and leaving; exhaust-air, entering and leaving) on a psychrometricchart.
"\\begin{aligned}\nrate &= 1000\\ L\/s\\\\\n\\\\\nT_{f_i} &= 10\u00b0C\\\\\n\n\u03c9_{f_i} &= 50\\%\\\\\n\\\\\n\n\nT_{f_o} &= 38\u00b0C\\\\\n\n\u03c9_{f_i} &= 40\\%\\\\\\\\\n\nT_{s_i} &= 31\u00b0C\\\\\n\n\u03c9_{s_i} &= 35% \n\\end{aligned}"
"\u2206t = |t_{f i }\u2212 t_{f o}|=| 10\u00b0C- 38\u00b0C| = 28\u00b0C"
"\u2206t_{tot } = |t_{f i }\u2212 t_{si}|=| 10\u00b0C- 35\u00b0C| = 25\u00b0C"
"\u03b5S =\n\\dfrac{\u2206t\n}{\u2206t_{tot}}= \\dfrac{28\u00b0C}{25\u00b0C}= 1.12"
"\u2206\u03c9 = |\u03c9_{f i }\u2212 \u03c9_{f o}|=| 50\\% - 40\\%| =10\\%"
"\u2206\u03c9_{tot } = |\u03c9_{f i }\u2212 \u03c9_{si}|=| 50\\% - 35\\% | = 15\\%"
"\u03b5L =\n\\dfrac{\u2206\u03c9}{\n\u2206\u03c9_{tot}}= \\dfrac{10\\%}{15\\% } = 0.33"
Comments
Leave a comment