Question #177537

A point moves along the path Y= (X/3) with a constant speed of Sm/s. What are the X and Y components of velocity when X=3m? What is the acceleration of point when x=3m!


1
Expert's answer
2021-04-12T01:47:46-0400

y=x3y= \frac{x}{3}

Differentiating dydt=3dxdt\frac{dy}{dt}=3 \frac{dx}{dt}

dydt=vy;dxdt=vx\frac{dy}{dt}=v_y; \frac{dx}{dt}=v_x

Also from x2+y2=s2x^2+y^2=s^2 we know that vx2+vy2=s=const\sqrt{v_x^2+v_y^2}=s= const

At x=3, dydt=3dxdt    vy=3vx\frac{dy}{dt}=3 \frac{dx}{dt} \implies v_y=3v_x

1) vx2+9vx2=sv_x^2+9v_x^2=s

10vx2=s10v_x^2=s

vx=s10m/sv_x= \sqrt{\frac{s}{10}}m/s

vy=3s10m/sv_y= 3\sqrt{\frac{s}{10}} m/s

And acceleration, a=v2ra= \frac{v^2}{r}

Radius of curvature ,r=(1+(dydx)2)3d2ydx2r=\frac{(1+ (\frac{dy}{dx})^2)^3}{\frac{d^2y}{dx^2}}

r=(1+32)30=0\frac{(1+3^2)^3}{0}=0

a=s20=0m/s2a= \frac{s^2}{0}=0 m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS