In a crank and slotted lever mechanism, the length of crank is 560 mm and the
ratio of time of working stroke to return stroke is 2.8. Determine (a) distance
between the fixed centres, and (b) the length of the slotted lever, if length of
stroke is 250 mm.
180−ββ=1QPR=12.8\frac{180-\beta}{\beta} = \frac{1}{QPR}=\frac{1}{2.8}β180−β=QPR1=2.81
180−ββ=2.8 ⟹ β=2.8×180−2.8β\frac{180-\beta}{\beta} = 2.8 \implies \beta= 2.8 \times180 -2.8\betaβ180−β=2.8⟹β=2.8×180−2.8β
β=180×2.83.8= ⟹ β2=90×2.83.8\beta=\frac{180\times2.8}{3.8}=\implies \frac{\beta}{2}=\frac{90\times2.8}{3.8}β=3.8180×2.8=⟹2β=3.890×2.8
cos(β2)=AB1ACcos(\frac{\beta}{2})=\frac{AB_1}{AC}cos(2β)=ACAB1
cos(90×2.83.8)=560ACcos(\frac{90\times2.8}{3.8})=\frac{560}{AC}cos(3.890×2.8)=AC560
AC=1394mmAC = 1394 mmAC=1394mm
Stroke=2×CD×AB1ACStroke =2\times CD \times\frac{AB_1}{AC}Stroke=2×CD×ACAB1
250=2×CD×5001394250 =2\times CD \times\frac{500}{1394}250=2×CD×1394500
CD=250×13942×500=348.5mmCD=\frac{250 \times 1394}{2 \times 500}=348.5 mmCD=2×500250×1394=348.5mm
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments