Question #147860
A 400 mm diameter pipe carries water under a head of 30 m with a velocity of
3.5 m/s. If the axis of the pipe turns through 46⁰, calculate the magnitude and
the direction of the resultant force at the bend
1
Expert's answer
2020-12-07T03:48:05-0500

Diameter of pipe is 400 mm, velocity of fluid=3.5 m/s, Head of flowing water=30 m

θ=460\theta=46 ^0 ,

Cross sectional area of pipe=π×d2/4=3.14×.4×.44=0.1256m2\pi\times d^2/4= \frac{3.14\times .4\times .4}{4}=0.1256 m^2


Pressure=P=ρ×g×h=1000×9.8×30=2.94×105PaP=\rho \times g\times h= 1000\times 9.8\times 30=2.94 \times 10 ^5 Pa

At the site of bend there two force act one horizontal and other vertical force

Force acting in horizantal direction

Rate of flow = AV= 0.1256×3.5=0.4396\times 3.5=0.4396 =Q


Fx=ρQ(v1v2cos460)+P1A1P2A2cos460F_x=\rho Q(v_1-v_2cos 46^0)+ P_1A_1-P_2A_2cos 46^0


Fx=1000×0.4396(3.52.43)+2.94×105×0.12562.94×105×0.1256×0.694)F_x=1000\times 0.4396 (3.5-2.43)+ 2.94 \times 10^5\times 0.1256- 2.94 \times 10^5 \times 0.1256 \times 0.694)


Fx=470.372+3.693×1042.56×104=11800.372F_x=470.372+3.693 \times 10 ^4-2.56 \times 10^4=11800.372 N


Fy=ρQ(v1yv2sin460)+P1A1yP2A2ysin460F_y=\rho Q(v_1y-v_2sin 46^0)+ P_1A_1y-P_2A_2ysin 46^0


Fy=1000×0.4396(02.43)+02.94×105×0.1256×0.719)F_y=1000\times 0.4396 (0-2.43)+ 0- 2.94 \times 10^5 \times 0.1256 \times 0.719)

Fy=316.2226550.08=26866.3F_y=-316.22-26550.08=-26866.3 N


F=Fx2+Fy2=(11800.372)2+(26866.3)2=29343.599F=\sqrt{F_x^2+F_y^2}=\sqrt{(11800.372)^2+(-26866.3)^2}=29343.599 N


and for the direction we have


tan(ϕ)=FyFx=2.726(\phi)= \frac{F_y}{F_x}=-2.726


ϕ=69.850\phi= 69.85^0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS