Question #144143
Air of mass 2 kg is compressed reversibly and adiabatically from an initial state at 1.2 kPa, 28°C
to 2 MPa and then expanded at a constant pressure to the original volume.
(i) Sketch the process on the p-V plane;
(ii) Determine the heat and work transfer.
Take for air, assume R = 0.287 kJ/kgK and Cv = 0.713 kJ/kgK
1
Expert's answer
2020-12-07T03:58:12-0500

m=2kgm=2kg

ν(Air)=28,97g/mol\nu(Air) =28,97 g/mol

p0=1.2kPap_0=1.2kPa

P1=2MPaP_1=2MPa

T0=28CT_0=28 C

Solution


pV=RTηpV= RT \eta



m=2kgm=2kg

ν(Air)=28,97g/mol\nu(Air) =28,97 g/mol

p0=1.2kPap_0=1.2kPa

P1=2MPaP_1=2MPa

T0=28CT_0=28 C


pV=νRTpV=\nu RT -> p0V0=νRT0p_0V_0=\nu RT_0 -> V0=νRT0/p0V_0=\nu RT_0/p_0

Adiabatic process: p0V0γ=p1V1γp_0V_0^\gamma=p_1V_1^\gamma -> V1=...V_1=...

where γ=(i+2)/i\gamma=(i+2)/i for air i=1.4i=1.4 γ=2.43\gamma=2.43

A12=pdV=p0(V0/V1)γdV==p0V0(γ1)(V1(1γ)V0(1γ))A_12=\int pdV=p_0\int(V_0/V_1)^\gamma dV= =-p_0V_0^(\gamma-1)* (V_1^(1-\gamma)-V_0^(1-\gamma))

A23=0A_23=0

Q12=0Q_12=0

Q23=mCp(T3T2)Q_23=mC_p(T_3-T_2)

Cp=Cv+RC_p=C_v+R

T2=p1V1/(p0V0)T0T_2=p_1V_1/(p_0V_0)T_0

T3=p1V0/(p1V1)T2T_3=p_1V_0/(p_1V_1)T_2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS