Question #125743
A 600 g ball A is moving with a velocity of magnitude 6 m/s when it hit by a 1 kg ball B that has a velocity of magnitude 4 m/s. Knowing that the coefficient of restitution is 0.8 and assuming no friction, determine the velocity of each ball after impact.
1
Expert's answer
2020-07-22T06:03:36-0400

(vA)n=6cos40°=4.596m/s(v_A)_n=6\cdot \cos40°=4.596m/s


(vA)t=6sin40°=3.857m/s(v_A)_t=-6\cdot \sin40°=-3.857m/s


(vB)n=4m/s(v_B)_n=-4m/s


(vB)t=0(v_B)_t=0


t-direction:


mA(vA)t+mB(vB)t=mA(vA)t+mB(vB)tm_A(v_A)_t+m_B(v_B)_t=m_A(v'_A)_t+m_B(v'_B)_t


0.6(3.857)+0=0.6(vA)t+1(vB)t0.6\cdot(-3.857)+0=0.6\cdot(v'_A)_t+1\cdot (v'_B)_t


2.314=0.6(vA)t+(vB)t-2.314=0.6\cdot(v'_A)_t+(v'_B)_t


For ball A


mA(vA)t=mA(vA)t3.857=(vA)t(vA)t=3.857m/sm_A\cdot(v_A)_t=m_A\cdot(v'_A)_t\to -3.857=(v'_A)_t\to (v'_A)_t=-3.857m/s


So, we have


2.314=0.6(3.857)+(vB)t(vB)t=0-2.314=0.6\cdot(-3.857)+(v'_B)_t\to (v'_B)_t=0


n-direction


((vA)n(vB)n)e=(vB)n(vA)n((v_A)_n-(v_B)_n)e=(v'_B)_n-(v'_A)_n

(4.596(4))0.8=(vB)n(vA)n(4.596-(-4))\cdot0.8=(v'_B)_n-(v'_A)_n


(vB)n(vA)n=6.877(vB)n=6.877+(vA)n(v'_B)_n-(v'_A)_n=6.877\to (v'_B)_n=6.877+(v'_A)_n


mA(vA)n+mB(vB)n=mA(vA)n+mB(vB)nm_A(v_A)_n+m_B(v_B)_n=m_A(v'_A)_n+m_B(v'_B)_n


0.64.596+1(4)=1(vB)n+0.6(vA)n0.6\cdot 4.596+1\cdot(-4)=1\cdot(v'_B)_n+0.6\cdot(v'_A)_n


(vB)n+0.6(vA)n=1.24246.877+(vA)n+0.6(vA)n=1.2424(v'_B)_n+0.6\cdot(v'_A)_n=-1.2424\to 6.877+(v'_A)_n+0.6\cdot(v'_A)_n=-1.2424


(vA)n=5.075m/s(v'_A)_n=-5.075m/s


(vB)n=6.877+(vA)n=6.8775.075=1.802m/s(v'_B)_n=6.877+(v'_A)_n=6.877-5.075=1.802m/s


For ball A after impact


tanβ=(vA)t(vA)n=3.8575.075β=37.2°β+40°=77.2°\tan\beta=\frac{(v_A)_t}{(v_A)_n}=\frac{3.857}{5.075}\to \beta=37.2°\to \beta+40°=77.2° Answer


vA=3.8572+5.0752=6.37m/sv'_A=\sqrt{3.857^2+5.075^2}=6.37m/s Answer


For ball B after impact


vB=1.802m/sv'_B=1.802m/s, γ=40°\gamma=40° Answer












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS