( v A ) n = 6 ⋅ cos 40 ° = 4.596 m / s (v_A)_n=6\cdot \cos40°=4.596m/s ( v A ) n = 6 ⋅ cos 40° = 4.596 m / s
( v A ) t = − 6 ⋅ sin 40 ° = − 3.857 m / s (v_A)_t=-6\cdot \sin40°=-3.857m/s ( v A ) t = − 6 ⋅ sin 40° = − 3.857 m / s
( v B ) n = − 4 m / s (v_B)_n=-4m/s ( v B ) n = − 4 m / s
( v B ) t = 0 (v_B)_t=0 ( v B ) t = 0
t-direction:
m A ( v A ) t + m B ( v B ) t = m A ( v A ′ ) t + m B ( v B ′ ) t m_A(v_A)_t+m_B(v_B)_t=m_A(v'_A)_t+m_B(v'_B)_t m A ( v A ) t + m B ( v B ) t = m A ( v A ′ ) t + m B ( v B ′ ) t
0.6 ⋅ ( − 3.857 ) + 0 = 0.6 ⋅ ( v A ′ ) t + 1 ⋅ ( v B ′ ) t 0.6\cdot(-3.857)+0=0.6\cdot(v'_A)_t+1\cdot (v'_B)_t 0.6 ⋅ ( − 3.857 ) + 0 = 0.6 ⋅ ( v A ′ ) t + 1 ⋅ ( v B ′ ) t
− 2.314 = 0.6 ⋅ ( v A ′ ) t + ( v B ′ ) t -2.314=0.6\cdot(v'_A)_t+(v'_B)_t − 2.314 = 0.6 ⋅ ( v A ′ ) t + ( v B ′ ) t
For ball A
m A ⋅ ( v A ) t = m A ⋅ ( v A ′ ) t → − 3.857 = ( v A ′ ) t → ( v A ′ ) t = − 3.857 m / s m_A\cdot(v_A)_t=m_A\cdot(v'_A)_t\to -3.857=(v'_A)_t\to (v'_A)_t=-3.857m/s m A ⋅ ( v A ) t = m A ⋅ ( v A ′ ) t → − 3.857 = ( v A ′ ) t → ( v A ′ ) t = − 3.857 m / s
So, we have
− 2.314 = 0.6 ⋅ ( − 3.857 ) + ( v B ′ ) t → ( v B ′ ) t = 0 -2.314=0.6\cdot(-3.857)+(v'_B)_t\to (v'_B)_t=0 − 2.314 = 0.6 ⋅ ( − 3.857 ) + ( v B ′ ) t → ( v B ′ ) t = 0
n-direction
( ( v A ) n − ( v B ) n ) e = ( v B ′ ) n − ( v A ′ ) n ((v_A)_n-(v_B)_n)e=(v'_B)_n-(v'_A)_n (( v A ) n − ( v B ) n ) e = ( v B ′ ) n − ( v A ′ ) n
( 4.596 − ( − 4 ) ) ⋅ 0.8 = ( v B ′ ) n − ( v A ′ ) n (4.596-(-4))\cdot0.8=(v'_B)_n-(v'_A)_n ( 4.596 − ( − 4 )) ⋅ 0.8 = ( v B ′ ) n − ( v A ′ ) n
( v B ′ ) n − ( v A ′ ) n = 6.877 → ( v B ′ ) n = 6.877 + ( v A ′ ) n (v'_B)_n-(v'_A)_n=6.877\to (v'_B)_n=6.877+(v'_A)_n ( v B ′ ) n − ( v A ′ ) n = 6.877 → ( v B ′ ) n = 6.877 + ( v A ′ ) n
m A ( v A ) n + m B ( v B ) n = m A ( v A ′ ) n + m B ( v B ′ ) n m_A(v_A)_n+m_B(v_B)_n=m_A(v'_A)_n+m_B(v'_B)_n m A ( v A ) n + m B ( v B ) n = m A ( v A ′ ) n + m B ( v B ′ ) n
0.6 ⋅ 4.596 + 1 ⋅ ( − 4 ) = 1 ⋅ ( v B ′ ) n + 0.6 ⋅ ( v A ′ ) n 0.6\cdot 4.596+1\cdot(-4)=1\cdot(v'_B)_n+0.6\cdot(v'_A)_n 0.6 ⋅ 4.596 + 1 ⋅ ( − 4 ) = 1 ⋅ ( v B ′ ) n + 0.6 ⋅ ( v A ′ ) n
( v B ′ ) n + 0.6 ⋅ ( v A ′ ) n = − 1.2424 → 6.877 + ( v A ′ ) n + 0.6 ⋅ ( v A ′ ) n = − 1.2424 (v'_B)_n+0.6\cdot(v'_A)_n=-1.2424\to 6.877+(v'_A)_n+0.6\cdot(v'_A)_n=-1.2424 ( v B ′ ) n + 0.6 ⋅ ( v A ′ ) n = − 1.2424 → 6.877 + ( v A ′ ) n + 0.6 ⋅ ( v A ′ ) n = − 1.2424
( v A ′ ) n = − 5.075 m / s (v'_A)_n=-5.075m/s ( v A ′ ) n = − 5.075 m / s
( v B ′ ) n = 6.877 + ( v A ′ ) n = 6.877 − 5.075 = 1.802 m / s (v'_B)_n=6.877+(v'_A)_n=6.877-5.075=1.802m/s ( v B ′ ) n = 6.877 + ( v A ′ ) n = 6.877 − 5.075 = 1.802 m / s
For ball A after impact
tan β = ( v A ) t ( v A ) n = 3.857 5.075 → β = 37.2 ° → β + 40 ° = 77.2 ° \tan\beta=\frac{(v_A)_t}{(v_A)_n}=\frac{3.857}{5.075}\to \beta=37.2°\to \beta+40°=77.2° tan β = ( v A ) n ( v A ) t = 5.075 3.857 → β = 37.2° → β + 40° = 77.2° Answer
v A ′ = 3.85 7 2 + 5.07 5 2 = 6.37 m / s v'_A=\sqrt{3.857^2+5.075^2}=6.37m/s v A ′ = 3.85 7 2 + 5.07 5 2 = 6.37 m / s Answer
For ball B after impact
v B ′ = 1.802 m / s v'_B=1.802m/s v B ′ = 1.802 m / s , γ = 40 ° \gamma=40° γ = 40° Answer
Comments