For finding the error in measurement we can find, ζ=0.65\zeta=0.65ζ=0.65 ,f=6,000,fn=18,000f=6,000,f_n= 18,000f=6,000,fn=18,000
E+1=1(1−ωωn2)2+(2ζωωn)2E+1 =\frac{1}{(1-\frac{\omega}{\omega_n}^2)^2} + (\frac{2 \zeta \omega }{\omega_n})^2E+1=(1−ωnω2)21+(ωn2ζω)2
E+1=1(1−6000180002)2+(2×0.65×600018000)2E+1 =\frac{1}{(1-\frac{6000}{18000}^2)^2} + (\frac{2 \times 0.65 \times 6000 }{18000})^2E+1=(1−1800060002)21+(180002×0.65×6000)2
E+1 = 1.2656 + 0.1877
E= 0.4533
E= 45.3345.33 %45.33 % this is the error percentage
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments