Given:-
"\\\\Intial\\,density\\,(\\rho _{1})=1.2\\times kg\/m^{3}\\\\[5pt]\nIntial\\,velocity\\,(v_{1})=4m\/sec\\\\[5pt]\nInlet\\, Area(A_{1})=6\\times 6\\times 10^{-4}m^{2}\\\\[5pt]\nInlet\\, Area(A_{1})=36\\times 10^{-4}m^{2}\\\\[5pt]\nOutlet \\,velocity(v_{2})=3m\/sec\\\\[5pt]\nDiameter(D)=5\\times 10^{-2}m^{2}\\\\[5pt]"
Find the mass flow rate and the density at outlet.
Now,
"\\\\Outlet\\,area\\,(A_{2})=\\frac{\\pi }{4}\\times D^{2}\\\\[5pt]\nOutlet\\,area\\,(A_{2})=\\frac{\\pi }{4}\\times (5\\times 10^{-2})^{2}\\\\[5pt]\nOutlet\\,area\\,(A_{2})=19.63\\times 10^{-4}m^{2}\\\\[5pt]\nThe\\,mass\\,flow\\,rate\\,is\\\\[5pt]\nm=\\rho _{1}A_{1}V_{1}\\\\[5pt]\nm =1.2\\times 36\\times 10^{-4}\\times 4\\\\[5pt]\nm=17.28\\times 10^{-3}kg\/s"
Therefore,
Conservation of mass between section (1) and (2).
so,
"\\rho _{1}A_{1}V_{1}=\\rho _{2}A_{1}V_{2}"
Hence, the density at section (2) .
"m_{2}=\\rho _{2}A_{1}V_{2}\\\\[10pt]\ntherefore.\\\\\nm=m_{1}=m_{2}\\\\[5pt]\nNow,"
"\\\\\\rho_{2} =\\frac{m}{A_{2}\\times V_{2}}\\\\[10pt]\n\\rho_{2} =\\frac{17.28\\times 10^{-3}}{19.63\\times 10^{-4}\\times3}\\\\[10pt]\n\\rho_{2} =2.933\\,kg\/m^{3}"
Answer:-
The mass flow rate and the density at outlet.
"\\rho_{2} =2.933\\,kg\/m^{3}"
Comments
Thanks for the solution
Leave a comment