Question #256600

Find inverse Laplace transform of:

G(s)= S / (S+1) (S+1+j1)^2 (S+1-j1)^2

Solve step by step and briefly.


1
Expert's answer
2021-10-26T07:00:22-0400

L1{ss2+4s+5}=L1{s+2(s+2)2+121(s+2)2+1}UsethelinearitypropertyofInverseLaplaceTransformForfunctionsf(s),g(s)andconstantsa,b:L1{af(s)+bg(s)}=aL1{f(s)}+bL1{g(s)}=e2tcos(t)2e2tsin(t)L^{-1}\left\{\frac{s}{s^2+4s+5}\right\}\\ =L^{-1}\left\{\frac{s+2}{\left(s+2\right)^2+1}-2\cdot \frac{1}{\left(s+2\right)^2+1}\right\}\\ Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =e^{-2t}\cos \left(t\right)-2e^{-2t}\sin \left(t\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS