Find inverse Laplace transform of:
G(s)= S / (S+1) (S+1+j1)^2 (S+1-j1)^2
Solve step by step and briefly.
"L^{-1}\\left\\{\\frac{s}{s^2+4s+5}\\right\\}\\\\\n=L^{-1}\\left\\{\\frac{s+2}{\\left(s+2\\right)^2+1}-2\\cdot \\frac{1}{\\left(s+2\\right)^2+1}\\right\\}\\\\\nUse\\:the\\:linearity\\:property\\:of\\:Inverse\\:Laplace\\:Transform\\\\\n\\mathrm{For\\:functions\\:}f\\left(s\\right),\\:g\\left(s\\right)\\mathrm{\\:and\\:constants\\:}a,\\:b:\\quad L^{-1}\\left\\{a\\cdot f\\left(s\\right)+b\\cdot g\\left(s\\right)\\right\\}=a\\cdot L^{-1}\\left\\{f\\left(s\\right)\\right\\}+b\\cdot L^{-1}\\left\\{g\\left(s\\right)\\right\\}\\\\\n=e^{-2t}\\cos \\left(t\\right)-2e^{-2t}\\sin \\left(t\\right)"
Comments
Leave a comment