Find inverse Laplace transform of following:
1.F(s)=(S+1) / ((S+2)^2 (S+2S+4)^2 )
L−1{(S+1)((S+2)2(S+2S+4)2)}=L−1{−12(S+2)−14(S+2)2+32(3S+4)−34(3S+4)2}Use the linearity property of Inverse Laplace Transform:For functions f(s), g(s) and constants a, b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=−12e−2t−e−2tt4+12e−4t3−e−4t3t12L^{-1}\left\{\frac{\left(S+1\right)}{\left(\left(S+2\right)^2\left(S+2S+4\right)^2\right)}\right\}\\ =L^{-1}\left\{-\frac{1}{2\left(S+2\right)}-\frac{1}{4\left(S+2\right)^2}+\frac{3}{2\left(3S+4\right)}-\frac{3}{4\left(3S+4\right)^2}\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =-\frac{1}{2}e^{-2t}-\frac{e^{-2t}t}{4}+\frac{1}{2}e^{-\frac{4t}{3}}-\frac{e^{-\frac{4t}{3}}t}{12}L−1{((S+2)2(S+2S+4)2)(S+1)}=L−1{−2(S+2)1−4(S+2)21+2(3S+4)3−4(3S+4)23}UsethelinearitypropertyofInverseLaplaceTransform:Forfunctionsf(s),g(s)andconstantsa,b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=−21e−2t−4e−2tt+21e−34t−12e−34tt
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments