If a car agency sells 50% of its inventory of a certain foreign equipped cars with air bags. Find out Probability mass function (P.M.F) & cumulative distribution function (C.D.F) of the next 4 cars to be sold
Let X be number of cars with airbags among the next 4 cars sold by the agency.
Therefore
"X\\backsim Binomial (n=4,p=0.4)\\\\"
Probability mass function f(x)
"f(x)=\\dbinom{4}{x}0.5^x(1-0.5)^{4-x}=\\\\\n\\dbinom{4}{x}0.5^x(1-0.5)^{4-x}=\\dbinom{4}{x}0.5^4=\\dfrac{1}{16}\\dbinom{4}{x}\\\\\nx=0,1,2,3,4"
Cumulative distribution function
"F(x)=\\displaystyle\\sum_{t\\leq{x}}f(t)\\\\\nf(0)=\\dfrac{1}{16}\\dbinom{4}{0}=\\dfrac{1}{16}\\\\\nf(1)=\\dfrac{1}{16}\\dbinom{4}{1}=\\dfrac{1}{4}\\\\\nf(2)=\\dfrac{1}{16}\\dbinom{4}{2}=\\dfrac{3}{8}\\\\\nf(3)=\\dfrac{1}{16}\\dbinom{4}{3}=\\dfrac{1}{4}\\\\\nf(4)=\\dfrac{1}{16}\\dbinom{4}{4}=\\dfrac{1}{16}\\\\\nF(0)=\\dfrac{1}{16}\\\\\nF(1)=f(0)+f(1)=\\dfrac{5}{16}\\\\\nF(2)=f(0)+f(1)+f(2)=\\dfrac{11}{16}\\\\\nF(3)=f(0)+f(1)+f(2)+f(3)=\\dfrac{15}{16}\\\\\nF(4)=f(0)+f(1)+f(2)+f(3)+f(4)=1\\\\\nF(X)=\\begin{cases}\n\\dfrac{1}{16} &\\text{for } 0\\leq{x}\\gt1\\\\\n\\\\\n \\dfrac{5}{16} &\\text{for } 1\\leq{x}\\gt2\\\\\n\\\\\n \\dfrac{5}{16} &\\text{for } 2\\leq{x}\\gt3\\\\\n\\\\\n \\dfrac{15}{16} &\\text{for } 3\\leq{x}\\gt4\\\\\n\\\\\n1 &\\text{for }x\\geq4\n\n\\end{cases}"
Comments
Leave a comment