Question #213518

Consider the LTI system

𝑦 𝑛 = 𝑥 𝑛 + 1 + 2𝑥 𝑛 + 𝑥 𝑛 − 1 − 𝑥 𝑛 − 2

What would be the response for the input as shown in figure


1
Expert's answer
2021-07-05T04:53:46-0400

𝑦𝑛=𝑥𝑛+1+2𝑥𝑛+𝑥𝑛1𝑥𝑛2    y(n)=(1)nx(n)+2x(n1)𝑦_ 𝑛 = 𝑥 _𝑛 + 1 + 2𝑥 _𝑛 + 𝑥_ 𝑛 − 1 − 𝑥 _𝑛 − 2 \implies y(n) = (-1)^n x(n)+2x(n-1)

The function is ,

y(n)=(1)nx(n)+2x(n1)y(n) = (-1)^n x(n)+2x(n-1)


(i) Causal/Non-Causal:

The impulse response of the system can be written as,


h(n)=(1)nδ(n)+2δ(n1)h(n) = (-1)^n \delta(n) + 2\delta(n-1 )


The impulse response is zero for all n<0n<0, implying the Causal system.


ii) Linear/Non-Linear:


For input x1(n)x_1(n) let output be y1(n)y_1(n)

For input x2(n)x_2(n) let output be y2(n)y_2(n)


We have, y1(n)=(1)nx1(n)+2x1(n1)y_1(n) = (-1)^n x_1(n) + 2x_1(n-1)


y2(n)=(1)nx2(n)+2x2(n1)y_2(n) = (-1)^n x_2(n) + 2x_2(n-1)

If the input was ax1(1)+bx2(n)ax_1(1)+bx_2(n),out put is


y1,2=(1)n[ax1(n)+bx2(n)]+2[ax1(n1)+bx2(n1)]y_{1,2} = (-1)^n[ax_1(n)+bx_2(n)]+2[ax_1(n-1)+bx_2(n-1)]


=(1)nax1(n)+2ax1(n1)+(1)nbx2(n)+2bx2(n1)= (-1)^nax_1(n)+2ax_1(n-1)+(-1)^nbx_2(n)+2bx_2(n-1)

=ay1(n)+by2(n)= ay_1(n) + by_2(n)

Thus we observe the system satisfies the superposition principle; hence it is Linear.


iii) Time invariant/Time-varying:


For a delayed input x(nn0)x(n-n_0) the output is


y(n,n0)=(1)nx(nn0)+2x(nn01)y(n,n_0) = (-1)^nx(n-n_0) + 2x(n-n_0-1) ......................(1)

For a delayed time nn0n-n_0, The output equation is,


y(nn0)=(1)nn0x(nn0)+2x(nn01)y(n-n_0) = (-1)^{n-n_0} x(n-n_0) + 2x(n-n_0-1) .............(2)


We observe that equations (1) and (2) are not equal. Which implies it is Time-varying.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS