A = 2 π ∫ α β x ( θ ) [ x ′ ( θ ) ] 2 + [ y ′ ) ] 2 d θ A = 2\pi\int_{\alpha}^{\beta}x(θ) \sqrt{[x′(θ)]2+[y′)]2dθ} A = 2 π ∫ α β x ( θ ) [ x ′ ( θ )] 2 + [ y ′ )] 2 d θ
P a r a m e t e r θ v a r i e s f r o m 0 t o 2 π Parameter\space θ \space varies\space from\space 0 \space to \space2π P a r am e t er θ v a r i es f ro m 0 t o 2 π
Derivatives:
x ′ ( θ ) = ( θ − s i n θ ) ′ = 1 − c o s θ , x
′
(
θ
)
=
(
θ
−
sin
θ
)
′
=
1
−
cos
θ
, x ′ ( θ ) = ( θ − s in θ ) ′ = 1 − cos θ ,
y ′ ( θ ) = ( 1 − c o s θ ) ′ = s i n θ , y
′
(
θ
)
=
(
1
−
cos
θ
)
′
=
sin
θ
, y ′ ( θ ) = ( 1 − cos θ ) ′ = s in θ ,
[ x ′ ( θ ) ] 2 + [ y ′ ( θ ) ] 2 = ( 1 − c o s θ ) 2 + s i n 2 θ = 1 − 2 c o s θ + c o s 2 θ + s i n 2 θ [x′(θ)]^2+[y′(θ)]^2=(1−cosθ)^2+sin^2θ=1−2cosθ+cos^2 \theta+sin^2 \theta [ x ′ ( θ ) ] 2 + [ y ′ ( θ ) ] 2 = ( 1 − cos θ ) 2 + s i n 2 θ = 1 − 2 cos θ + co s 2 θ + s i n 2 θ
= 2 − 2 c o s θ = 4 s i n 2 θ 2 =2-2cos \theta=4 sin ^2 \frac{\theta}{2} = 2 − 2 cos θ = 4 s i n 2 2 θ
A = 2 π ∫ 0 2 x [ ( θ − s i n θ ) . 2 s i n θ 2 ] d θ = 4 π [ ∫ 0 2 x θ s i n θ 2 d θ − ∫ 0 2 x s i n θ s i n θ 2 d θ ] A=2\pi\int_0^{2x} [(\theta-sin \theta).2sin \frac{\theta}{2}]d\theta=4 \pi[\int_0^{2x} \theta sin \frac{\theta }{2} d \theta- \int_0^{2x} sin \theta sin \frac{\theta}{2} d\theta] A = 2 π ∫ 0 2 x [( θ − s in θ ) .2 s in 2 θ ] d θ = 4 π [ ∫ 0 2 x θ s in 2 θ d θ − ∫ 0 2 x s in θ s in 2 θ d θ ]
I 2 = ∫ 0 2 x s i n θ s i n θ 2 d θ = 4 3 s i n 3 θ 2 ∣ 0 2 x = 0 I_2=\int_0^{2x} sin \theta sin \frac{\theta}{2}d \theta=\frac{4}{3} sin^3 \frac{\theta}{2} |_0^{2x}=0 I 2 = ∫ 0 2 x s in θ s in 2 θ d θ = 3 4 s i n 3 2 θ ∣ 0 2 x = 0
The area of the surface is ;
= 4 x [ I 1 − I 2 ] =4x[I_1-I_2] = 4 x [ I 1 − I 2 ]
Comments