A=2π∫αβx(θ)[x′(θ)]2+[y′)]2dθ
Parameter θ varies from 0 to 2π
Derivatives:
x′(θ)=(θ−sinθ)′=1−cosθ,
y′(θ)=(1−cosθ)′=sinθ,
[x′(θ)]2+[y′(θ)]2=(1−cosθ)2+sin2θ=1−2cosθ+cos2θ+sin2θ
=2−2cosθ=4sin22θ
A=2π∫02x[(θ−sinθ).2sin2θ]dθ=4π[∫02xθsin2θdθ−∫02xsinθsin2θdθ]
I2=∫02xsinθsin2θdθ=34sin32θ∣02x=0
The area of the surface is ;
=4x[I1−I2]
Comments