Question #204651
  • Find the area of the surface of the solid formed by the revolution the curve, x=a(θ - sinθ) and Y=a(1- cosθ) about x-axis (y=0).
1
Expert's answer
2021-06-09T11:15:02-0400

A=2παβx(θ)[x(θ)]2+[y)]2dθA = 2\pi\int_{\alpha}^{\beta}x(θ) \sqrt{[x′(θ)]2+[y′)]2dθ}

Parameter θ varies from 0 to 2πParameter\space θ \space varies\space from\space 0 \space to \space2π

Derivatives:

x(θ)=(θsinθ)=1cosθ,x ′ ( θ ) = ( θ − sin θ ) ′ = 1 − cos θ ,

y(θ)=(1cosθ)=sinθ,y ′ ( θ ) = ( 1 − cos θ ) ′ = sin θ ,

[x(θ)]2+[y(θ)]2=(1cosθ)2+sin2θ=12cosθ+cos2θ+sin2θ[x′(θ)]^2+[y′(θ)]^2=(1−cosθ)^2+sin^2θ=1−2cosθ+cos^2 \theta+sin^2 \theta

=22cosθ=4sin2θ2=2-2cos \theta=4 sin ^2 \frac{\theta}{2}

A=2π02x[(θsinθ).2sinθ2]dθ=4π[02xθsinθ2dθ02xsinθsinθ2dθ]A=2\pi\int_0^{2x} [(\theta-sin \theta).2sin \frac{\theta}{2}]d\theta=4 \pi[\int_0^{2x} \theta sin \frac{\theta }{2} d \theta- \int_0^{2x} sin \theta sin \frac{\theta}{2} d\theta]

I2=02xsinθsinθ2dθ=43sin3θ202x=0I_2=\int_0^{2x} sin \theta sin \frac{\theta}{2}d \theta=\frac{4}{3} sin^3 \frac{\theta}{2} |_0^{2x}=0

The area of the surface is ;

=4x[I1I2]=4x[I_1-I_2]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS