Find the volume of the solid generated by revolving about the x-axis by the curve, y2 = 9x and the line y = 3x
V=2x∫21(2−x)(x3+x+1−8)dxV=2x \int_2^1 (2-x)(x^3+x+1-8)dxV=2x∫21(2−x)(x3+x+1−8)dx
=2x∫02(−x4+2x3−x2+2x)dx=2x\int^2_0(-x^4+2x^3-x^2+2x)dx=2x∫02(−x4+2x3−x2+2x)dx
=[−x55+x44−x33+x2]01=[-\frac{x^5}{5}+\frac{x^4}{4}-\frac{x^3}{3}+x^2]_0^1=[−5x5+4x4−3x3+x2]01
=2π[−15+12+13+1]=2\pi[\frac{-1}{5}+\frac{1}{2}+\frac{1}{3}+1]=2π[5−1+21+31+1]
=29π15=\frac{29\pi}{15}=1529π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments