Find the volume of the solid formed by revolving the curve, r=a(1+cosθ), about the initial line.
V=∫23π∗r2sinAV=\int\frac{2}{3} \pi*r^2 sin AV=∫32π∗r2sinA da
a=θa=\thetaa=θ
2π3∫a3∗(1−cosa)3sinA\frac{2\pi}{3}∫a^3*(1-cos a)^3 sinA32π∫a3∗(1−cosa)3sinA da
t=1−cosAt=1-cos At=1−cosA
Sin A da=dtda=dtda=dt
a=t=0,a=t=0,a=t=0,
a=π,a=\pi,a=π,
t=2t=2t=2
Volume=83∗π∗a3Volume=\frac{8}{3} *\pi*a^3Volume=38∗π∗a3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments