Answer to Question #155190 in Electrical Engineering for Mina malik

Question #155190

A single phase overhead transmission line delivers 4000 kW at 11 kV at 0·8 p.f. lagging. If resistance and reactance per conductor are 0·15 Ω and 0·02 Ω respectively, calculate:

(i) percentage regulation

(ii) sending end power factor

(iii) line losses


1
Expert's answer
2021-01-19T05:19:58-0500

P=4KW,VR=11KV,cos(ϕR)=0.8,r=0.15Ω,X=0.02ΩP = 4KW, V_R=11KV, cos(\phi_R)=0.8, r=0.15\Omega, X=0.02\Omega


I=PVRcos(ϕR)=4000×10011000×0.8=454.54AI = \frac{P}{V_R cos(\phi_R)} = \frac{4000\times 100}{11000\times 0.8}=454.54A


(i) Percentage regulation, =VsVRVR×100=VR+I(r+jX)VRVR×100=454.54(0.15+0.02j)11000×100=0.624= \frac{V_s-V_R}{V_R}\times 100 = \frac{V_R+I(r+jX)-V_R}{V_R}\times 100 = \frac{454.54(0.15+0.02j)}{11000} \times 100 = 0.624


(ii) Sending end power factor, VRcos(ϕR)+IRVs=(11000×0.8)+(454.54×0.15)(11000×0.8)+(454.54×(0.15+0.02j))=0.99\frac{V_R cos(\phi_R) +IR}{V_s} = \frac{(11000\times 0.8)+(454.54\times 0.15)}{(11000\times 0.8)+(454.54\times (0.15+0.02j))}=0.99



(iii) Line loss, I2R=(454.542×0.15)=30.985KWI^2R = (454.54^2 \times 0.15) = 30.98 5 KW



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment