a. Find the complex and exponential form:
x ( t ) = 3 cos ( 4 w 0 t ) ⟺ 0 + j 3 2 ⟺ 3 2 e j 9 0 ∘ . x(t)=3\text{cos}(4w_0t)\iff0+j\frac{3}{\sqrt{2}}\iff\frac{3}{\sqrt{2}}e^{j90^\circ}. x ( t ) = 3 cos ( 4 w 0 t ) ⟺ 0 + j 2 3 ⟺ 2 3 e j 9 0 ∘ . Fourier series coefficients from -π to π :
a 0 = ∫ − π π cos ( 4 ω 0 t ) d x π , a n = ∫ − π π cos ( 4 ω 0 t ) cos ( t k ) d x π , b n = ∫ − π π sin ( t k ) cos ( 4 ω 0 t ) d x π , k = 1 , 2 , 3 , . . . a_0=\frac{\int^\pi_{-\pi}\text{cos}(4\omega_0t)dx}{\pi},\\
a_n=\frac{\int^\pi_{-\pi}\text{cos}(4\omega_0t)\text{cos}(tk)dx}{\pi},\\
b_n=\frac{\int^\pi_{-\pi}\text{sin}(tk)\text{cos}(4\omega_0t)dx}{\pi},\\
k=1,2,3,... a 0 = π ∫ − π π cos ( 4 ω 0 t ) d x , a n = π ∫ − π π cos ( 4 ω 0 t ) cos ( t k ) d x , b n = π ∫ − π π sin ( t k ) cos ( 4 ω 0 t ) d x , k = 1 , 2 , 3 , ... b. Find the complex and exponential form:
x ( t ) = sin 2 ( t ) = 1 2 − cos(2t) 2 ⟺ 1 2 − j 2 2 ⟺ ⟺ 1 2 − e j 9 0 ∘ 2 2 . x(t)=\text{sin}^2(t)=\frac{1}{2}-\frac{\text{cos(2t)}}{2}\iff\frac{1}{2}-\frac{j}{2\sqrt2}\iff\\\iff\frac{1}{2}-\frac{e^{j90^\circ}}{2\sqrt2}. x ( t ) = sin 2 ( t ) = 2 1 − 2 cos(2t) ⟺ 2 1 − 2 2 j ⟺ ⟺ 2 1 − 2 2 e j 9 0 ∘ .
Fourier series coefficients from -π to π :
a 0 = ∫ − π π sin 2 ( t ) d x π , a n = ∫ − π π sin 2 ( t ) cos ( t k ) d x π , b n = ∫ − π π sin 2 ( t ) sin ( t k ) d x π , k = 1 , 2 , 3 , . . . a_0=\frac{\int^\pi_{-\pi}\text{sin}^2(t)dx}{\pi},\\
a_n=\frac{\int^\pi_{-\pi}\text{sin}^2(t)\text{cos}(tk)dx}{\pi},\\
b_n=\frac{\int^\pi_{-\pi}\text{sin}^2(t)\text{sin}(tk)dx}{\pi},\\
k=1,2,3,... a 0 = π ∫ − π π sin 2 ( t ) d x , a n = π ∫ − π π sin 2 ( t ) cos ( t k ) d x , b n = π ∫ − π π sin 2 ( t ) sin ( t k ) d x , k = 1 , 2 , 3 , ...
2. Find the DTFT of
x ( n ) = { 1 , if 1 ≤ n ≤ 3 0 otherwise } x(n)=\begin{Bmatrix}
1,& \text{if }1\leq n\leq3 \\
0&\text{otherwise}
\end{Bmatrix} x ( n ) = { 1 , 0 if 1 ≤ n ≤ 3 otherwise }
X ( Ω ) = ∑ 1 3 e − j Ω n = e − 3 j Ω ( e j Ω + e 2 j Ω + 1 ) . X(\Omega)=\sum^3_1e^{-j\Omega n}=e^{-3j\Omega}(e^{j\Omega}+e^{2j\Omega}+1). X ( Ω ) = 1 ∑ 3 e − j Ω n = e − 3 j Ω ( e j Ω + e 2 j Ω + 1 ) .
Comments