a. Find the complex and exponential form:
x(t)=3cos(4w0t)⟺0+j23⟺23ej90∘.Fourier series coefficients from -π to π:
a0=π∫−ππcos(4ω0t)dx,an=π∫−ππcos(4ω0t)cos(tk)dx,bn=π∫−ππsin(tk)cos(4ω0t)dx,k=1,2,3,...b. Find the complex and exponential form:
x(t)=sin2(t)=21−2cos(2t)⟺21−22j⟺⟺21−22ej90∘.
Fourier series coefficients from -π to π:
a0=π∫−ππsin2(t)dx,an=π∫−ππsin2(t)cos(tk)dx,bn=π∫−ππsin2(t)sin(tk)dx,k=1,2,3,...
2. Find the DTFT of
x(n)={1,0if 1≤n≤3otherwise}
X(Ω)=1∑3e−jΩn=e−3jΩ(ejΩ+e2jΩ+1).
Comments