a. Find the complex and exponential form:
"x(t)=3\\text{cos}(4w_0t)\\iff0+j\\frac{3}{\\sqrt{2}}\\iff\\frac{3}{\\sqrt{2}}e^{j90^\\circ}."Fourier series coefficients from -π to π:
"a_0=\\frac{\\int^\\pi_{-\\pi}\\text{cos}(4\\omega_0t)dx}{\\pi},\\\\\na_n=\\frac{\\int^\\pi_{-\\pi}\\text{cos}(4\\omega_0t)\\text{cos}(tk)dx}{\\pi},\\\\\nb_n=\\frac{\\int^\\pi_{-\\pi}\\text{sin}(tk)\\text{cos}(4\\omega_0t)dx}{\\pi},\\\\\nk=1,2,3,..."b. Find the complex and exponential form:
"x(t)=\\text{sin}^2(t)=\\frac{1}{2}-\\frac{\\text{cos(2t)}}{2}\\iff\\frac{1}{2}-\\frac{j}{2\\sqrt2}\\iff\\\\\\iff\\frac{1}{2}-\\frac{e^{j90^\\circ}}{2\\sqrt2}."
Fourier series coefficients from -π to π:
"a_0=\\frac{\\int^\\pi_{-\\pi}\\text{sin}^2(t)dx}{\\pi},\\\\\na_n=\\frac{\\int^\\pi_{-\\pi}\\text{sin}^2(t)\\text{cos}(tk)dx}{\\pi},\\\\\nb_n=\\frac{\\int^\\pi_{-\\pi}\\text{sin}^2(t)\\text{sin}(tk)dx}{\\pi},\\\\\nk=1,2,3,..."
2. Find the DTFT of
"x(n)=\\begin{Bmatrix}\n 1,& \\text{if }1\\leq n\\leq3 \\\\\n 0&\\text{otherwise}\n\\end{Bmatrix}"
"X(\\Omega)=\\sum^3_1e^{-j\\Omega n}=e^{-3j\\Omega}(e^{j\\Omega}+e^{2j\\Omega}+1)."
Comments
Leave a comment