Question #114898
Find the complex exponential Fourier series coefficients for:
a. x(t)=3cos(4w0t)
b. x(t)=sin^2(t)
2. Find the DTFT of:
x(n)={1 0<=n<=3
0 otherwise}
1
Expert's answer
2020-05-11T14:26:46-0400

a. Find the complex and exponential form:


x(t)=3cos(4w0t)    0+j32    32ej90.x(t)=3\text{cos}(4w_0t)\iff0+j\frac{3}{\sqrt{2}}\iff\frac{3}{\sqrt{2}}e^{j90^\circ}.

Fourier series coefficients from -π to π:


a0=ππcos(4ω0t)dxπ,an=ππcos(4ω0t)cos(tk)dxπ,bn=ππsin(tk)cos(4ω0t)dxπ,k=1,2,3,...a_0=\frac{\int^\pi_{-\pi}\text{cos}(4\omega_0t)dx}{\pi},\\ a_n=\frac{\int^\pi_{-\pi}\text{cos}(4\omega_0t)\text{cos}(tk)dx}{\pi},\\ b_n=\frac{\int^\pi_{-\pi}\text{sin}(tk)\text{cos}(4\omega_0t)dx}{\pi},\\ k=1,2,3,...

b. Find the complex and exponential form:


x(t)=sin2(t)=12cos(2t)2    12j22        12ej9022.x(t)=\text{sin}^2(t)=\frac{1}{2}-\frac{\text{cos(2t)}}{2}\iff\frac{1}{2}-\frac{j}{2\sqrt2}\iff\\\iff\frac{1}{2}-\frac{e^{j90^\circ}}{2\sqrt2}.

Fourier series coefficients from -π to π:


a0=ππsin2(t)dxπ,an=ππsin2(t)cos(tk)dxπ,bn=ππsin2(t)sin(tk)dxπ,k=1,2,3,...a_0=\frac{\int^\pi_{-\pi}\text{sin}^2(t)dx}{\pi},\\ a_n=\frac{\int^\pi_{-\pi}\text{sin}^2(t)\text{cos}(tk)dx}{\pi},\\ b_n=\frac{\int^\pi_{-\pi}\text{sin}^2(t)\text{sin}(tk)dx}{\pi},\\ k=1,2,3,...

2. Find the DTFT of


x(n)={1,if 1n30otherwise}x(n)=\begin{Bmatrix} 1,& \text{if }1\leq n\leq3 \\ 0&\text{otherwise} \end{Bmatrix}

X(Ω)=13ejΩn=e3jΩ(ejΩ+e2jΩ+1).X(\Omega)=\sum^3_1e^{-j\Omega n}=e^{-3j\Omega}(e^{j\Omega}+e^{2j\Omega}+1).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS