We are to solve a first-order nonlinear ordinary differential equation:
"\\bigg(\\text{cos}x\\cdot\\text{log}(2y-8)+\\frac{1}{x}\\bigg)\\text{d}x+\\frac{\\text{sin}x}{y-4}\\text{d}y=0." Open up the parentheses:
"\\text{cos}x\\cdot\\text{log}(2y-8)\\text{d}x+\\frac{\\text{d}x}{x}+\\frac{\\text{sin}x}{y-4}\\text{d}y=0.\\space\\space\\space\\space\\space\\space(1)" After thinking for a while we can see that
"\\frac{\\text{d}x}{x}=\\text{d}(\\text {log}x),\\\\\n\\space\\\\\n\\text{cos}x\\text{d}x=\\text{d}(\\text {sin}x),"
"\\frac{\\text{d}y}{y-4} = \\text{d}(\\text{log}(2y-8))." Therefore, if we make a substitution in equation (1):
"\\text{cos}x=f(x),\\space\\frac{1}{x}=g(x),\\\\\n\\space\\\\\n[f(x)g(x)]'=f'(x)g(x)+g'(x)f(x)" (chain rule),
we can rewrite equation (1) above as
"d(\\text{sin}x)\\cdot\\text{log}(2y-8)+\\text{d(log}x)+\\text{sin}x\\cdot\\text{d}(\\text{log}(2y-8))=0,\\\\"
finally, integration by parts gives
"y(x)=\\frac{1}{2}x^{-\\frac{1}{\\text{sin}x}}\\big(e^{\\frac{c_1}{\\text{sin}x}}+8x^{\\frac{1}{\\text{sin}x}}\\big)."
Comments
Leave a comment