We are to solve a first-order nonlinear ordinary differential equation:
(cosx⋅log(2y−8)+x1)dx+y−4sinxdy=0. Open up the parentheses:
cosx⋅log(2y−8)dx+xdx+y−4sinxdy=0. (1) After thinking for a while we can see that
xdx=d(logx), cosxdx=d(sinx),
y−4dy=d(log(2y−8)). Therefore, if we make a substitution in equation (1):
\text{cos}x=f(x),\space\frac{1}{x}=g(x),\\
\space\\
[f(x)g(x)]'=f'(x)g(x)+g'(x)f(x) (chain rule),
we can rewrite equation (1) above as
d(sinx)⋅log(2y−8)+d(logx)+sinx⋅d(log(2y−8))=0,
finally, integration by parts gives
y(x)=21x−sinx1(esinxc1+8xsinx1).
Comments