Question #101860
Cosx log(2y-8)+1/x]dx+(sinx/y-4)dy=0
1
Expert's answer
2020-01-28T07:10:18-0500

We are to solve a first-order nonlinear ordinary differential equation:


(cosxlog(2y8)+1x)dx+sinxy4dy=0.\bigg(\text{cos}x\cdot\text{log}(2y-8)+\frac{1}{x}\bigg)\text{d}x+\frac{\text{sin}x}{y-4}\text{d}y=0.

Open up the parentheses:


cosxlog(2y8)dx+dxx+sinxy4dy=0.      (1)\text{cos}x\cdot\text{log}(2y-8)\text{d}x+\frac{\text{d}x}{x}+\frac{\text{sin}x}{y-4}\text{d}y=0.\space\space\space\space\space\space(1)

After thinking for a while we can see that


dxx=d(logx), cosxdx=d(sinx),\frac{\text{d}x}{x}=\text{d}(\text {log}x),\\ \space\\ \text{cos}x\text{d}x=\text{d}(\text {sin}x),

dyy4=d(log(2y8)).\frac{\text{d}y}{y-4} = \text{d}(\text{log}(2y-8)).

Therefore, if we make a substitution in equation (1):


\text{cos}x=f(x),\space\frac{1}{x}=g(x),\\ \space\\ [f(x)g(x)]'=f'(x)g(x)+g'(x)f(x)

(chain rule),

we can rewrite equation (1) above as


d(sinx)log(2y8)+d(logx)+sinxd(log(2y8))=0,d(\text{sin}x)\cdot\text{log}(2y-8)+\text{d(log}x)+\text{sin}x\cdot\text{d}(\text{log}(2y-8))=0,\\

finally, integration by parts gives


y(x)=12x1sinx(ec1sinx+8x1sinx).y(x)=\frac{1}{2}x^{-\frac{1}{\text{sin}x}}\big(e^{\frac{c_1}{\text{sin}x}}+8x^{\frac{1}{\text{sin}x}}\big).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS