a) The corresponding EMF induced in each coil:
"V_1=-N_1\\frac{d\\Phi}{dt}=-2000\\cdot1\\cdot10^{-3}=-2\\text{ V}.\\\\\n\\space\\\\\nV_2=-kN_2\\frac{d\\Phi}{dt}=-0.8\\cdot3000\\cdot1\\cdot10^{-3}=-2.4\\text{ V}." b) Self-inductance can be calculated from Faraday's law as well:
"V_1=-L_1\\frac{dI_1}{dt},\\\\\n\\space\\\\\nL_1=-\\frac{V_1}{dI_1\/dt}=\\frac{2}{500}=4\\cdot10^{-3}\\text{ H}." For the second coil, since
"kN_2\\frac{d\\Phi}{dt}=L_2\\frac{dI_2}{dt},\\\\\n\\space\\\\\nk\\frac{dI_2}{dt}=\\frac{dI_1}{dt},\\\\\n\\space\\\\\nL_2=-\\frac{V_2}{kdI_1\/dt}=\\frac{2.4}{0.8\\cdot500}=6\\cdot10^{-3}\\text{ H}." c) The mutual inductance:
"M=k\\sqrt{L_1L_2}=\\\\=0.8\\sqrt{4\\cdot10^{-3}\\cdot6\\cdot10^{-3}}=3.9\\cdot10^{-3}\\text{ H}." d) The effective inductance of the two coils in series cumulatively coupled:
"L_{\\text{cef}}=L_1+L_2+2M=13.9\\cdot10^{-3}\\text{ H}." Differentially coupled:
"L_{\\text{def}}=L_1+L_2-2M=6.1\\cdot10^{-3}\\text{ H}."
Comments
Leave a comment