Considering the following equation of the slope
dydx=2x4x=2x3\frac{dy}{dx}= \frac{2x^4}{x}= 2x^3dxdy=x2x4=2x3
Separating the variables
dy=2x3dx∫dy=∫2x3dxy=2x44+Cy=x42+Cdy = 2x^3 dx\\ \int dy = \int 2x^3 dx\\ y= \frac{2x^4}{4}+C\\ y= \frac{x^4}{2}+C\\dy=2x3dx∫dy=∫2x3dxy=42x4+Cy=2x4+C
Finding the value of C
y=x42+C5=042+CC=5y= \frac{x^4}{2}+C\\ 5= \frac{0^4}{2}+C\\ C=5y=2x4+C5=204+CC=5
The equation of the curve is given as
y=x42+5y= \frac{x^4}{2}+5\\y=2x4+5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment