y′ =(2−x)(x+1)Iff′(x)=g(x)thenf(x)=∫g(x)dxy=∫(2−x)(x+1)dxy=x22−x33+2x+c1y=x22−x33+2x+256y'\:=\left(2-x\right)\left(x+1\right)\\ \mathrm{If\quad }f'\left(x\right)=g\left(x\right)\mathrm{\quad then\quad }f\left(x\right)=\int g\left(x\right)dx\\ y=\int \left(2-x\right)\left(x+1\right)dx\\ y=\frac{x^2}{2}-\frac{x^3}{3}+2x+c_1\\ y=\frac{x^2}{2}-\frac{x^3}{3}+2x+\frac{25}{6}y′=(2−x)(x+1)Iff′(x)=g(x)thenf(x)=∫g(x)dxy=∫(2−x)(x+1)dxy=2x2−3x3+2x+c1y=2x2−3x3+2x+625
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments