Question #230366
Find the solution of the given differential equation and then find the particular solution for which a point (x,y) is given:

dy/dx = (2-x) (x+1); (x,y) = (-1,3)
1
Expert's answer
2021-08-28T06:16:17-0400

y=(2x)(x+1)Iff(x)=g(x)thenf(x)=g(x)dxy=(2x)(x+1)dxy=x22x33+2x+c1y=x22x33+2x+256y'\:=\left(2-x\right)\left(x+1\right)\\ \mathrm{If\quad }f'\left(x\right)=g\left(x\right)\mathrm{\quad then\quad }f\left(x\right)=\int g\left(x\right)dx\\ y=\int \left(2-x\right)\left(x+1\right)dx\\ y=\frac{x^2}{2}-\frac{x^3}{3}+2x+c_1\\ y=\frac{x^2}{2}-\frac{x^3}{3}+2x+\frac{25}{6}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS