Part 1
"Case 1\\\\\n\\frac{u_1^2}{2a}=x_1+u_1t\\\\\n\nCase 2\\\\\nx_2=u_2t+\\frac{u_2^2}{2a}\\\\\n\\frac{u_2^2}{2a}=x_2-u_2t\\\\\nSo, \\frac{u_1^2}{u_2^2}=\\frac{x_1-u_1t}{x_2-u_2t}\\\\\nu_1^2x_2-u_2u_1^2t= x_1u_2^2-u_1u_2^2t\\\\\nt= \\frac{x_1u_2^2-x_2u_1^2}{u_1^2u_2-u_1u_2^2}\\\\\nt= \\frac{56.693*13.411^2-24.384*22.352^2}{22.352*13.411(22.352-13.411}\\\\\nt=0.741 s"
Part 2
"a= \\frac{u_1^2}{2(x_1-u_1t)}\\\\\na= \\frac{22.352^2}{2(56.693-22.352*0.741)}\\\\\na=6.22 m\/s^2"
Comments
Leave a comment