Question #210156

The box frame is subjected to a uniform distributed loading w along each of its sides. Determine the moment developed in each corner. Neglect the deflection due to axial load. EI is constant. 


The image is in this link https://ibb.co/74pwHpL

1
Expert's answer
2021-06-24T16:25:02-0400


The fixed end moment

FEMAB=FEMBA=l212;FEMAD=FEMDA=l212FEM_{AB}= -FEM_{BA}= \frac{l^2}{12}; FEM_{AD}= -FEM_{DA}= \frac{l^2}{12}

For symmetric loading about x-axis and y- axis

θA=θB=θD\theta_A=-\theta_B=-\theta_D

Using the slope deflcetion method at AB

MAB=2EIl(2θA+θB)+FEMABM_{AB}=\frac{2EI}{l}(2 \theta_A+\theta_B)+FEM_{AB}

MAB=2EIl(2θAθA)+wl212=2EIl(2θA)+wl212M_{AB}=\frac{2EI}{l}(2 \theta_A-\theta_A)+\frac{wl^2}{12}=\frac{2EI}{l}(2 \theta_A)+\frac{wl^2}{12}

Using the slope deflcetion method at AD

MAD=2EIl(2θA+θD)+FEMADM_{AD}=\frac{2EI}{l}(2 \theta_A+\theta_D)+FEM_{AD}

MAD=2EIl(2θAθA)wl212=2EIl(2θA)wl212M_{AD}=\frac{2EI}{l}(2 \theta_A-\theta_A)-\frac{wl^2}{12}=\frac{2EI}{l}(2 \theta_A)-\frac{wl^2}{12}

MA=0    MAB+MAD=0\sum M_A=0 \implies M_{AB}+M_{AD}=0

2EIl(2θA)+wl212+2EIl(2θA)wl212=0\frac{2EI}{l}(2 \theta_A)+\frac{wl^2}{12}+\frac{2EI}{l}(2 \theta_A)-\frac{wl^2}{12}=0

θA=0\theta_A=0

MAB=wl212M_{AB}=\frac{wl^2}{12}

MAD=wl212M_{AD}=-\frac{wl^2}{12}

Moment developed at each corner is wl212\frac{wl^2}{12}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS