The box frame is subjected to a uniform distributed loading w along each of its sides. Determine the moment developed in each corner. Neglect the deflection due to axial load. EI is constant.
The image is in this link https://ibb.co/74pwHpL
The fixed end moment
"FEM_{AB}= -FEM_{BA}= \\frac{l^2}{12}; FEM_{AD}= -FEM_{DA}= \\frac{l^2}{12}"
For symmetric loading about x-axis and y- axis
"\\theta_A=-\\theta_B=-\\theta_D"
Using the slope deflcetion method at AB
"M_{AB}=\\frac{2EI}{l}(2 \\theta_A+\\theta_B)+FEM_{AB}"
"M_{AB}=\\frac{2EI}{l}(2 \\theta_A-\\theta_A)+\\frac{wl^2}{12}=\\frac{2EI}{l}(2 \\theta_A)+\\frac{wl^2}{12}"
Using the slope deflcetion method at AD
"M_{AD}=\\frac{2EI}{l}(2 \\theta_A+\\theta_D)+FEM_{AD}"
"M_{AD}=\\frac{2EI}{l}(2 \\theta_A-\\theta_A)-\\frac{wl^2}{12}=\\frac{2EI}{l}(2 \\theta_A)-\\frac{wl^2}{12}"
"\\sum M_A=0 \\implies M_{AB}+M_{AD}=0"
"\\frac{2EI}{l}(2 \\theta_A)+\\frac{wl^2}{12}+\\frac{2EI}{l}(2 \\theta_A)-\\frac{wl^2}{12}=0"
"\\theta_A=0"
"M_{AB}=\\frac{wl^2}{12}"
"M_{AD}=-\\frac{wl^2}{12}"
Moment developed at each corner is "\\frac{wl^2}{12}"
Comments
Leave a comment