Question #196482

A distributed load of w N/m is applied over an entire length of a simply supported beam 8m long. The beam section is made up of four 20mmx100mm rectangles arranged as shown. A. Determine the maximum value of w without exceeding the permissible flexure stress of 10MPa. B. Determine the maximum value of w without exceeding the permissible shear stress of 1.2MPa.C. Determine the maximum value of w without exceeding the permissible screw strength of 800N for a pitch of 75mm. * 


1
Expert's answer
2021-05-24T11:47:02-0400

NAΩ=0\sum N_A\varOmega=0

w×8×4RB×8=0w\times8\times4-R_B\times8=0

RB=4WR_B=4W

and ,RA=RB=4WR_A=R_B=4W

Moment at any distance η,\eta,

Nη=4Wηwη,η2N\eta=4W\eta-w\eta,\frac{\eta}{2}

dNdm=4wwη=0\frac{dN}{dm}=4w-w\eta=0

η=4m\eta=4m

Mmax=4W.4w.4.42M_{max}=4W.4-w.4.\frac{4}{2}

=16w8w=8w=16w-8w=8w

Mmax=8wNMM_{max}=8w NM

τ=VAyˉIb=4w×(Ay1ˉ+A2yˉ2)Ib\tau=\frac{VA\bar{y}}{Ib}=\frac{4w\times(A\bar{y_1}+A_2\bar{y}_2)}{Ib}

1.2=4w×(100×20×60+40×50×25I×401.2=\frac{4w\times(100\times20\times60+40\times50\times25}{I\times 40}

I=100×1403122×30×100312=1.786×107mmI=\frac{100\times140^3}{12}-\frac{2\times30\times100^3}{12}=1.786\times10^7mm

1.2=4×w×(100×20×60+40×50×251.786×102×401.2=\frac{4\times w\times(100\times20\times60+40\times50\times25}{1.786\times10^2\times40}

w=1260.71N/mw=1260.71 N/m


VAyˉI.P\frac{VA\bar{y}}{I}.P

4w×100×20×60×751.786×107=2×800\frac{4w\times100\times20\times60\times75}{1.786\times10^7}=2\times800

w=793.78N/mw=793.78 N/m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS