Evaluate the integral cos⁷3x dx with the limits from 0 to π/6.
∫0π2cos7(3x)13d3x\int _0^{\frac{\pi }{2}}\cos ^7\left(3x\right)\frac{1}{3}d3x∫02πcos7(3x)31d3x
=13⋅∫0π2cos7(3x)d3x=\frac{1}{3}\cdot \int _0^{\frac{\pi }{2}}\cos ^7\left(3x\right)d3x=31⋅∫02πcos7(3x)d3x
=13⋅∫0π2(1−sin2(3x))3cos(3x)d3x=\frac{1}{3}\cdot \int _0^{\frac{\pi }{2}}\left(1-\sin ^2\left(3x\right)\right)^3\cos \left(3x\right)d3x=31⋅∫02π(1−sin2(3x))3cos(3x)d3x
=13⋅∫01(1−v2)3dv=\frac{1}{3}\cdot \int _0^1\left(1-v^2\right)^3dv=31⋅∫01(1−v2)3dv
=13⋅∫011−3v2+3v4−v6dv=\frac{1}{3}\cdot \int _0^11-3v^2+3v^4-v^6dv=31⋅∫011−3v2+3v4−v6dv
=13(∫011dv−∫013v2dv+∫013v4dv−∫01v6dv)=\frac{1}{3}\left(\int _0^11dv-\int _0^13v^2dv+\int _0^13v^4dv-\int _0^1v^6dv\right)=31(∫011dv−∫013v2dv+∫013v4dv−∫01v6dv)
=13(1−1+35−17)=\frac{1}{3}\left(1-1+\frac{3}{5}-\frac{1}{7}\right)=31(1−1+53−71)
=16105=\frac{16}{105}=10516
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments