Question #195416

Evaluate the integral cos⁷3x dx with the limits from 0 to π/6.


1
Expert's answer
2021-05-24T14:38:01-0400

0π2cos7(3x)13d3x\int _0^{\frac{\pi }{2}}\cos ^7\left(3x\right)\frac{1}{3}d3x

=130π2cos7(3x)d3x=\frac{1}{3}\cdot \int _0^{\frac{\pi }{2}}\cos ^7\left(3x\right)d3x

=130π2(1sin2(3x))3cos(3x)d3x=\frac{1}{3}\cdot \int _0^{\frac{\pi }{2}}\left(1-\sin ^2\left(3x\right)\right)^3\cos \left(3x\right)d3x

=1301(1v2)3dv=\frac{1}{3}\cdot \int _0^1\left(1-v^2\right)^3dv

=130113v2+3v4v6dv=\frac{1}{3}\cdot \int _0^11-3v^2+3v^4-v^6dv

=13(011dv013v2dv+013v4dv01v6dv)=\frac{1}{3}\left(\int _0^11dv-\int _0^13v^2dv+\int _0^13v^4dv-\int _0^1v^6dv\right)

=13(11+3517)=\frac{1}{3}\left(1-1+\frac{3}{5}-\frac{1}{7}\right)

=16105=\frac{16}{105}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS