Answer to Question #195686 in Civil and Environmental Engineering for JOEL REY

Question #195686

1.Find the centroid of the region bounded by the curve 𝑦 = 𝑥3 and 𝑦 = 4𝑥 in the first quadrant. 


2. Find the centroid of the solid of revolution generated by revolving the region bounded by 𝑦 = 4𝑥 − 𝑥2 and the x-axis about the y-axis.


1
Expert's answer
2021-05-24T08:01:02-0400

1

Mx=12ab(f(x)2g(x)2)dx=1201[(4x)2(x3)]Mx=\frac{1}{2}\int_a^b(f(x)^2-g(x)^2)dx=\frac{1}{2}\int_0^1[(4x)^2-(x^3)]

=2.59523=2.59523

My=abx[f(x)g(x)]dx=01[x[(4x)2(x3)dx]My=\int_a^bx[f(x)-g(x)]dx=\int_0^1[x[(4x)^2-(x^3)dx]

=3.85714=\:3.85714

M=ab[f(x)g(x)]dx=01[4xx3]M=\int_a^b[f(x)-g(x)]dx=\int_0^1[4x-x^3]

=1.75=1.75

xˉ,yˉ=(MyM,MxM)=(2.20408,1.48289)\bar{x},\bar{y}=(\frac{My}{M},\frac{Mx}{M})=(2.20408,1.48289)

2

y=4xx2y=4x-x^2

4xx2=x4x-x^2=x

x=0,3x=0,3

we are interested in the point in the first quadrant, the transition point is

xt,yt=3,3x_t,y_t=3,3

yˉ=ydvv\bar{y}=\int\frac{ydv}{v} where v = volume

V=dV=πx2dyV=\int dV=\int \pi x^2dy

V=0ytπ2dy+yt4π(4y)dyV=\int_0^{y_t}\pi^2dy+\int_{y_t}^4 \pi(\sqrt{4-y)}dy

V=π[(13y3)0yt+(4y12y2)]yt4V=\pi[(\frac{1}{3}y^3)^{y_t}_0+(4y-\frac{1}{2}y^2)]^4_{y_t}

V=π12(1211717)V=\frac{\pi}{12}(121-17\sqrt{17)}

ydV=y(πx2dy)\int ydV=\int y(\pi x^2 dy)

ydV=0ytπ3dy+yt4πy(4y)dy\int ydV=\int_0^{y_t}\pi^3dy+\int_{y_t}^4\pi y(4-y)dy

ydV=π[(14y4)0yt+(2y213y3)yt4]\int ydV=\pi [(\frac{1}{4}y^4)_0^{y_t}+(2y^2-\frac{1}{3}y^3)_{y_t}^4]

ydV=x24(135+1717)\int ydV=\frac{x}{24}(135+17\sqrt{17)}

finally we find the the centroid:

yˉ=x24(135+1717)x12(1211717)\bar{y}=\frac{\frac{x}{24}(135+17\sqrt{17)}}{\frac{x}{12}(121-17\sqrt{17)}}

yˉ=83+1717762.014379\bar{y}=\frac{83+17\sqrt{17}}{76}\approx 2.014379



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment