1
Mx=21∫ab(f(x)2−g(x)2)dx=21∫01[(4x)2−(x3)]
=2.59523
My=∫abx[f(x)−g(x)]dx=∫01[x[(4x)2−(x3)dx]
=3.85714
M=∫ab[f(x)−g(x)]dx=∫01[4x−x3]
=1.75
xˉ,yˉ=(MMy,MMx)=(2.20408,1.48289)
2
y=4x−x2
4x−x2=x
x=0,3
we are interested in the point in the first quadrant, the transition point is
xt,yt=3,3
yˉ=∫vydv where v = volume
V=∫dV=∫πx2dy
V=∫0ytπ2dy+∫yt4π(4−y)dy
V=π[(31y3)0yt+(4y−21y2)]yt4
V=12π(121−1717)
∫ydV=∫y(πx2dy)
∫ydV=∫0ytπ3dy+∫yt4πy(4−y)dy
∫ydV=π[(41y4)0yt+(2y2−31y3)yt4]
∫ydV=24x(135+1717)
finally we find the the centroid:
yˉ=12x(121−1717)24x(135+1717)
yˉ=7683+1717≈2.014379
Comments
Leave a comment