1
M x = 1 2 ∫ a b ( f ( x ) 2 − g ( x ) 2 ) d x = 1 2 ∫ 0 1 [ ( 4 x ) 2 − ( x 3 ) ] Mx=\frac{1}{2}\int_a^b(f(x)^2-g(x)^2)dx=\frac{1}{2}\int_0^1[(4x)^2-(x^3)] M x = 2 1 ∫ a b ( f ( x ) 2 − g ( x ) 2 ) d x = 2 1 ∫ 0 1 [( 4 x ) 2 − ( x 3 )]
= 2.59523 =2.59523 = 2.59523
M y = ∫ a b x [ f ( x ) − g ( x ) ] d x = ∫ 0 1 [ x [ ( 4 x ) 2 − ( x 3 ) d x ] My=\int_a^bx[f(x)-g(x)]dx=\int_0^1[x[(4x)^2-(x^3)dx] M y = ∫ a b x [ f ( x ) − g ( x )] d x = ∫ 0 1 [ x [( 4 x ) 2 − ( x 3 ) d x ]
= 3.85714 =\:3.85714 = 3.85714
M = ∫ a b [ f ( x ) − g ( x ) ] d x = ∫ 0 1 [ 4 x − x 3 ] M=\int_a^b[f(x)-g(x)]dx=\int_0^1[4x-x^3] M = ∫ a b [ f ( x ) − g ( x )] d x = ∫ 0 1 [ 4 x − x 3 ]
= 1.75 =1.75 = 1.75
x ˉ , y ˉ = ( M y M , M x M ) = ( 2.20408 , 1.48289 ) \bar{x},\bar{y}=(\frac{My}{M},\frac{Mx}{M})=(2.20408,1.48289) x ˉ , y ˉ = ( M M y , M M x ) = ( 2.20408 , 1.48289 )
2
y = 4 x − x 2 y=4x-x^2 y = 4 x − x 2
4 x − x 2 = x 4x-x^2=x 4 x − x 2 = x
x = 0 , 3 x=0,3 x = 0 , 3
we are interested in the point in the first quadrant, the transition point is
x t , y t = 3 , 3 x_t,y_t=3,3 x t , y t = 3 , 3
y ˉ = ∫ y d v v \bar{y}=\int\frac{ydv}{v} y ˉ = ∫ v y d v where v = volume
V = ∫ d V = ∫ π x 2 d y V=\int dV=\int \pi x^2dy V = ∫ d V = ∫ π x 2 d y
V = ∫ 0 y t π 2 d y + ∫ y t 4 π ( 4 − y ) d y V=\int_0^{y_t}\pi^2dy+\int_{y_t}^4 \pi(\sqrt{4-y)}dy V = ∫ 0 y t π 2 d y + ∫ y t 4 π ( 4 − y ) d y
V = π [ ( 1 3 y 3 ) 0 y t + ( 4 y − 1 2 y 2 ) ] y t 4 V=\pi[(\frac{1}{3}y^3)^{y_t}_0+(4y-\frac{1}{2}y^2)]^4_{y_t} V = π [( 3 1 y 3 ) 0 y t + ( 4 y − 2 1 y 2 ) ] y t 4
V = π 12 ( 121 − 17 17 ) V=\frac{\pi}{12}(121-17\sqrt{17)} V = 12 π ( 121 − 17 17 )
∫ y d V = ∫ y ( π x 2 d y ) \int ydV=\int y(\pi x^2 dy) ∫ y d V = ∫ y ( π x 2 d y )
∫ y d V = ∫ 0 y t π 3 d y + ∫ y t 4 π y ( 4 − y ) d y \int ydV=\int_0^{y_t}\pi^3dy+\int_{y_t}^4\pi y(4-y)dy ∫ y d V = ∫ 0 y t π 3 d y + ∫ y t 4 π y ( 4 − y ) d y
∫ y d V = π [ ( 1 4 y 4 ) 0 y t + ( 2 y 2 − 1 3 y 3 ) y t 4 ] \int ydV=\pi [(\frac{1}{4}y^4)_0^{y_t}+(2y^2-\frac{1}{3}y^3)_{y_t}^4] ∫ y d V = π [( 4 1 y 4 ) 0 y t + ( 2 y 2 − 3 1 y 3 ) y t 4 ]
∫ y d V = x 24 ( 135 + 17 17 ) \int ydV=\frac{x}{24}(135+17\sqrt{17)} ∫ y d V = 24 x ( 135 + 17 17 )
finally we find the the centroid:
y ˉ = x 24 ( 135 + 17 17 ) x 12 ( 121 − 17 17 ) \bar{y}=\frac{\frac{x}{24}(135+17\sqrt{17)}}{\frac{x}{12}(121-17\sqrt{17)}} y ˉ = 12 x ( 121 − 17 17 ) 24 x ( 135 + 17 17 )
y ˉ = 83 + 17 17 76 ≈ 2.014379 \bar{y}=\frac{83+17\sqrt{17}}{76}\approx 2.014379 y ˉ = 76 83 + 17 17 ≈ 2.014379
Comments