1.Find the centroid of the region bounded by the curve π¦ = π₯3 and π¦ = 4π₯ in the first quadrant.Β
2. Find the centroid of the solid of revolution generated by revolving the region bounded by π¦ = 4π₯ β π₯2 and the x-axis about the y-axis.
1
"Mx=\\frac{1}{2}\\int_a^b(f(x)^2-g(x)^2)dx=\\frac{1}{2}\\int_0^1[(4x)^2-(x^3)]"
"=2.59523"
"My=\\int_a^bx[f(x)-g(x)]dx=\\int_0^1[x[(4x)^2-(x^3)dx]"
"=\\:3.85714"
"M=\\int_a^b[f(x)-g(x)]dx=\\int_0^1[4x-x^3]"
"=1.75"
"\\bar{x},\\bar{y}=(\\frac{My}{M},\\frac{Mx}{M})=(2.20408,1.48289)"
2
"y=4x-x^2"
"4x-x^2=x"
"x=0,3"
we are interested in the point in the first quadrant, the transition point is
"x_t,y_t=3,3"
"\\bar{y}=\\int\\frac{ydv}{v}" where v = volume
"V=\\int dV=\\int \\pi x^2dy"
"V=\\int_0^{y_t}\\pi^2dy+\\int_{y_t}^4 \\pi(\\sqrt{4-y)}dy"
"V=\\pi[(\\frac{1}{3}y^3)^{y_t}_0+(4y-\\frac{1}{2}y^2)]^4_{y_t}"
"V=\\frac{\\pi}{12}(121-17\\sqrt{17)}"
"\\int ydV=\\int y(\\pi x^2 dy)"
"\\int ydV=\\int_0^{y_t}\\pi^3dy+\\int_{y_t}^4\\pi y(4-y)dy"
"\\int ydV=\\pi [(\\frac{1}{4}y^4)_0^{y_t}+(2y^2-\\frac{1}{3}y^3)_{y_t}^4]"
"\\int ydV=\\frac{x}{24}(135+17\\sqrt{17)}"
finally we find the the centroid:
"\\bar{y}=\\frac{\\frac{x}{24}(135+17\\sqrt{17)}}{\\frac{x}{12}(121-17\\sqrt{17)}}"
"\\bar{y}=\\frac{83+17\\sqrt{17}}{76}\\approx 2.014379"
Comments
Leave a comment