Calculate the length of the polar curve r=1-sin(theta) on the given interval (0, 2π).
length of an arc lll =∫abr′(θ)2+r(θ)2dθ\int\limits_a^b \sqrt{{r' (}\theta)^2 + r(\theta)^2 d\theta}a∫br′(θ)2+r(θ)2dθ
where r=1−sinθr = 1 -sin\thetar=1−sinθ
and r′=(1−cos)2r' =(1-cos )^2r′=(1−cos)2
then l=l=l= ∫ab(1−cos)2+(1−sinθ)2\int\limits_a^b \sqrt{(1-cos )^2 + (1 -sin\theta)^2}a∫b(1−cos)2+(1−sinθ)2
where a=0a =0a=0 and b=2πb= 2\pib=2π
l=l=l= 6.283183
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment