Determine the arc lengths defined by the following functions over the given intervals: a.) y=1/3 x^3/2 on (0,4)
b.) r= sin² (theta)/2 on 0≤(theta)≤π.
(a.) y=1/3 x^3/2 [0,4]
dy/dx=d/dx[1/3(x)3/2
dy/dx= [1/3(x)3/2-1(3/2)]. d/dx(x+1)
dy/dx= [(x+1)1/2. (2x)
dy/dx= 2x(x+1)1/2
[a, b]= [0,4]
arc length= 40 1+(dy/dx)2dx
= 40 1+(2x(x+1)1/2)dx
= 40 1+(2x)2((x2+1)2/2)dx
= 40 1+4x2(x2)+4x2(1)dx
= 40 1+4x4+4x2+1dx
= 40 4x4+4x2+1dx
= 40 (2x2+1)2dx
= [ (2x2dx+ 1dx]40
=[2(x3/3)+ (x)]40
=[2(4)3/3+1]-[2(0)3/3+(0)]
=[128/3+1]-[0+0]
=43.667
Comments