a)
y = x 3 y=x^3 y = x 3
d y d x = 3 x 2 \frac{dy}{dx}=3x^2 d x d y = 3 x 2
S u r f a c e a r e a o f r e v o l u t i o n Surface\ area\ of\ revolution S u r f a ce a re a o f re v o l u t i o n
2 π ∫ 0 1 x 3 1 + ( 3 x 2 ) 2 d x 2\pi\int_{0}^{1}{x^3\sqrt{1+\left(3x^2\right)^2}\ dx} 2 π ∫ 0 1 x 3 1 + ( 3 x 2 ) 2 d x
l e t u = 1 + 9 x 4 let\ u=1+9x^4 l e t u = 1 + 9 x 4
d u = 36 x 3 d x du=36x^3\ dx d u = 36 x 3 d x
2 π ∫ u d u 36 2\pi\int{\sqrt u\frac{du}{36}} 2 π ∫ u 36 d u
π 18 ( 2 3 ) ( u ) 3 2 \frac{\pi}{18}\left(\frac{2}{3}\right)\left(u\right)^\frac{3}{2} 18 π ( 3 2 ) ( u ) 2 3
π 27 ( 1 + 9 x 4 ) 3 2 ( 0 , 1 ) \frac{\pi}{27}\left(1+9x^4\right)^\frac{3}{2}\ \ \ \ \ \left(0,\ 1\right) 27 π ( 1 + 9 x 4 ) 2 3 ( 0 , 1 )
π 27 ( ( 10 ) 3 2 − 1 ) \frac{\pi}{27}\left(\left(10\right)^\frac{3}{2}-1\right) 27 π ( ( 10 ) 2 3 − 1 )
1.13412 π 1.13412\pi 1.13412 π
b)
y = x 2 y=x^2 y = x 2
x = y x=\ \sqrt y x = y
d x d y = 1 2 y \frac{dx}{dy}=\frac{1}{2\sqrt y} d y d x = 2 y 1
S u r f a c e a r e o f r e v o l u t i o n Surface\ are\ of\ revolution S u r f a ce a re o f re v o l u t i o n
2 π ∫ 0 2 y 1 + ( 1 2 y ) 2 d y 2\pi\int_{0}^{\sqrt2}{\sqrt y\sqrt{1+\left(\frac{1}{2\sqrt y}\right)^2}\ dy} 2 π ∫ 0 2 y 1 + ( 2 y 1 ) 2 d y
2 π ∫ 0 2 y + 1 4 d y 2\pi\int_{0}^{\sqrt2}{\sqrt{y+\frac{1}{4}}\ dy} 2 π ∫ 0 2 y + 4 1 d y
2 π ( 2 3 ) ( y + 1 4 ) 3 2 ( 0 , 2 ) 2\pi\ \left(\frac{2}{3}\right)\left(y+\frac{1}{4}\right)^\frac{3}{2}\ (0,\ \sqrt2) 2 π ( 3 2 ) ( y + 4 1 ) 2 3 ( 0 , 2 )
4 π 3 ( ( 2 + 1 4 ) 3 2 − ( 1 4 ) 3 2 ) \frac{4\pi\ }{3}\left({\ \left(\sqrt2+\frac{1}{4}\right)}^\frac{3}{2}-\left(\frac{1}{4}\right)^\frac{3}{2}\right) 3 4 π ( ( 2 + 4 1 ) 2 3 − ( 4 1 ) 2 3 )
2.6958\pi\
Comments