Find the complete integral of the PDE px+qy+z=xq²
Explain the problem with step by step process?
The provided equation is: PDE px+qy+z=xq²px+qy+z=xq²px+qy+z=xq²
We can use Charpit's auxiliary equations to get:
ds=dp0=dq0=dzz+pq=dxx+q=dyy+pds=dp0,dp0=dq0 ⟹ p=C,q=Dds= \frac{dp}{0}= \frac{dq}{0}=\frac{dz}{z+pq}=\frac{dx}{x+q} =\frac{dy}{y+p}\\ ds=\frac{dp}{0}, \frac{dp}{0}=\frac{dq}{0} \implies p=C, q=Dds=0dp=0dq=z+pqdz=x+qdx=y+pdyds=0dp,0dp=0dq⟹p=C,q=D
We get a complete integral of:
dz=pdx+qdy=Cdx+Ddyz(x,y)=Cx+Dy+Edz = pdx + qdy = Cdx + Ddy \\ z(x,y) = Cx + Dy + Edz=pdx+qdy=Cdx+Ddyz(x,y)=Cx+Dy+E
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment