Question #236275

13)Show that the function f (z)=(z̅ )²/z,z≠0 ;0, z=0 satiesfies Cauchy-Rieman equations at z=0.Does f'(0) exist? Explain the problem with step by step process?


1
Expert's answer
2021-09-24T02:14:28-0400

Consider

f(z)=z2det Δw=f(z+Δz)f(z)ΔwΔz=z+Δz2z2ΔzΔwΔz=(z+Δz)(zˉ+Δzˉ)zzˉΔzΔwΔz=zˉ+Δzˉ+zΔzˉΔzf(z)= |z|^2\\ det \space \Delta w = f(z + \Delta z)- f(z)\\ \frac{ \Delta w}{ \Delta z}=\frac{ |z+\Delta z|^2-|z|^2}{ \Delta z}\\ \frac{ \Delta w}{ \Delta z}=\frac{ (z+\Delta z)(\bar{z}+\bar{\Delta z})-z \bar{z}}{ \Delta z}\\ \frac{ \Delta w}{ \Delta z}=\bar{z}+\bar{\Delta z}+\frac{ z\bar{\Delta z}}{ \Delta z}\\

When the horizontal line and vertical line approach Δzˉ\bar{\Delta z} towards the origin

Δzˉ=Δz,Δzˉ=Δz\bar{\Delta z}={\Delta z}, \bar{\Delta z}=-{\Delta z}

Then

ΔwΔz=zˉ+Δz+z\frac{\Delta w}{\Delta z}=\bar z+\Delta z+z for horizontal line


ΔwΔz=zˉΔzz\frac{\Delta w}{\Delta z}=\bar z-\Delta z-z for vertical line

as Δz0\Delta z \to 0

zˉ+Δz=zˉzˉ\bar z+\Delta z=\bar z-\bar z or z= 0

So f'(0) does not exist when z0z \not=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS