Consider
f(z)=∣z∣2det Δw=f(z+Δz)−f(z)ΔzΔw=Δz∣z+Δz∣2−∣z∣2ΔzΔw=Δz(z+Δz)(zˉ+Δzˉ)−zzˉΔzΔw=zˉ+Δzˉ+ΔzzΔzˉ
When the horizontal line and vertical line approach Δzˉ towards the origin
Δzˉ=Δz,Δzˉ=−Δz
Then
ΔzΔw=zˉ+Δz+z for horizontal line
ΔzΔw=zˉ−Δz−z for vertical line
as Δz→0
zˉ+Δz=zˉ−zˉ or z= 0
So f'(0) does not exist when z=0
Comments