Auxiliary equations are
"{dx\\over x(y^2+z)}={dy \\over -y(x^2+z)}={dz \\over z(x^2-y^2)}"By Choosing multipliers "x, y, -1," we get
"{xdx+ydy-dz\\over x^2y^2+x^2z-x^2y^2-y^2z-x^2z+y^2z}={xdx+ydy-dz\\over 0}"Then
"x^2+y^2-2z=C_1"By Choosing multipliers "1\/x, 1\/y, 1\/z," we get
"{{dx \\over x}+{dx \\over x}+{dz \\over z}\\over y^2+z-x^2-z+x^2-y^2}={{dx \\over x}+{dx \\over x}+{dz \\over z}\\over 0}"Then
"\\ln(xyz)=\\ln (C_2)"Or
"xyz=C_2"Parametric equation of the straight line is
"x=t, y=-t, z=1"Substitute
"t^2+(-t)^2-2(1)=C_1""t(-t)(1)=C_2"Eliminate "t"
"2t^2-2=C_1""t^2=-C_2"Then
"-2C_2-2=C_1"Or
"C_1+2C_2+2=0"Hence, the integral surface, which contains the straight line
"x^2+y^2-2z+2xyz+2=0"
Comments
Leave a comment