By definition, curl(x2−y2−z2−2)=∇×(x2−y2−z2−2) or, equivalently,
∇×(x2−y2−z2−2)=∣∣i∂x∂x2j∂y∂y2k∂z∂z2−2∣∣
curl(x2,y2,z2−2)=(∂y∂(y2)−∂z∂(z2−2),∂z∂(z2−2)−∂x∂(x2),∂x∂(x2)−∂y∂(y2))
Now, just plug in the found partial derivatives to get the curl:
curl(x2,y2,z2−2)=(2y−2z,2z−2x,2x−2y).
Finally, find the curl at the specific point.
(curl(x2,y2,z2−2))∣((x0,y0,z0)=(2,1,−1))=(4,−6,2)
The answer should be 4i - 6j+2k
Comments