Solve dy/dx= 4x² (y-x)² + if y /x is a particular solution.
Given DE:
Let
"u(x)=y\/x"Then
"y=u\\cdot x,\\quad y'=u'x+u"We get
"u'x+u=4x^2(ux-x)^2+u""u'x=4x^4(u-1)^2""\\frac{du}{(u-1)^2}=4x^3dx"
"-\\frac{1}{u-1}=x^4+C"
"u-1=-\\frac{1}{x^4+C}"
"u=1-\\frac{1}{x^4+C}"
Finally
"y(x)=x\\left(1-\\frac{1}{x^4+C}\\right)"
Comments
Leave a comment