Answer to Question #229223 in Chemical Engineering for Lokika

Question #229223

Solve dy/dx= 4x² (y-x)² + if y /x is a particular solution.


1
Expert's answer
2021-08-28T06:16:19-0400

Given DE:


dy/dx=4x²(yx)²+y/xdy/dx= 4x² (y-x)² +y/x

Let

u(x)=y/xu(x)=y/x

Then

y=ux,y=ux+uy=u\cdot x,\quad y'=u'x+u

We get

ux+u=4x2(uxx)2+uu'x+u=4x^2(ux-x)^2+uux=4x4(u1)2u'x=4x^4(u-1)^2

du(u1)2=4x3dx\frac{du}{(u-1)^2}=4x^3dx

1u1=x4+C-\frac{1}{u-1}=x^4+C

u1=1x4+Cu-1=-\frac{1}{x^4+C}

u=11x4+Cu=1-\frac{1}{x^4+C}

Finally

y(x)=x(11x4+C)y(x)=x\left(1-\frac{1}{x^4+C}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment